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We investigate subdiffusion in the quenched trap model by mapping the problem onto a new stochastic

process: Brownian motion stopped at the operational time S� ¼ P1
x¼�1ðnxÞ� where nx is the visitation

number at site x and � is a measure of the disorder. In the limit of zero temperature we recover the

renormalization group solution found by Monthus. Our approach is an alternative to the renormalization

group and is capable of dealing with any disorder strength.
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Random walks in disordered systems with diverging
expected waiting times have attracted vast interest over
many decades. Such processes describe a wide variety of
systems which exhibit diffusion slower than normal
hx2i � t� and 0< �< 1 [1,2]. Two approaches in this field
are the annealed continuous time random walk (CTRW)
model which is a mean field theory and by far the more
challenging quenched trap model (QTM). Starting in the
1970s, the Scher-Montroll CTRW approach was used to
model subdiffusive photocurrents in amorphous materials
[3] and recently for subdiffusion of single molecules in
living cells [4]. More generally, power law waiting times
describe stochastic dynamics in a wide range of systems
beyond the spatial random walk approach. Bouchaud
showed that the trap model is a useful tool for the descrip-
tion of aging phenomena in glasses [5,6]. Supercooled
liquids where jumps are performed between metabasins
in configuration space [7] and even atomic-like systems
such as blinking quantum dots [8] are analyzed with simi-
lar waiting time concepts.

Most of the theoretical works in the field use a mean
field approach. This means that the waiting times in differ-
ent states are assumed to be uncorrelated. Mathematically
this implies the renewal assumption. For example, for a
CTRW process on a lattice, waiting times between jump
events are independent identically distributed random var-
iables. In systems with fixed in time quenched disorder it is
well known that such an assumption does not reflect reality,
at least not below a critical dimension. Once a particle
visits a given site more than once, the waiting times must
be correlated and the disorder is not trivial.

This manuscript presents a new approach for random
walks in a fixed random environment. With physical argu-
ments [1,9,10] and rigorous mathematics [11,12] we know
that the QTM in dimensions d > 2 is expected to qualita-
tively behave like its corresponding mean field CTRW, the
latter being exact when d ! 1. For a random walk in a
quenched disordered system, intricate correlations induced
by multiple visits to the same site make the problem
interesting. For that reason renormalization group (RG)
methods [9,13] were used to tackle this problem. With

RG, Machta [9] found the scaling exponents of the QTM
and Monthus [13] investigated the diffusion front in the
limit of zero temperature (see details below). While the RG
is powerful, it has its limitations: a simple approach which
predicts the diffusion front is still missing. Here we provide
a statistical analysis of subdiffusion in the QTM with an
approach based on a novel time transformation. Possible
applications of our method to other nonequilibrium prob-
lems are mentioned at the end of the Letter.
Quenched trap model.—We consider a random walk on

a one dimensional lattice with lattice spacing equal one
[1,13,14]. For each lattice site x there is a quenched ran-
dom variable �x which is the waiting time between jump
events for a particle situated on x. After waiting for a
period �x the particle jumps to one of its two nearest
neighbors with equal probability. The particle starts on
the origin x ¼ 0 at time t ¼ 0, waits for time �0, then
with probability 1=2 jumps to x ¼ 1 (or x ¼ �1), waits
there for �1 (or ��1), then if the particle returns to x ¼ 0 it
waits for a time interval �0, etc. The f�xg’s are positive
independent identically distributed random variables with
a common probability density function (PDF)

c ð�xÞ � A

j�ð��Þj ð�xÞ
�ð1þ�Þ (1)

for �x ! 1 and 0<�< 1. Hence, the Laplace transform

of the waiting time PDF is ĉ ðuÞ � 1� Au� þ � � � when
u ! 0. As is well known [1], the QTM describes a random
walk among traps whose energy depth E> 0 is exponen-
tially distributed fðEÞ ¼ expð�E=TgÞ=Tg where Tg is a

measure of the disorder. It is easy to show that � ¼ T=Tg

and A ¼ j�ð��Þj� where T is the thermal temperature.
The goal of this Letter is to find the long time behavior of
hPðx; tÞi. The probability of finding the particle on x at time
t averaged over the disorder. For a comprehensive mathe-
matical review of the QTM, see [12].
Time in the quenched trap model is t ¼ P1

x¼�1 nx�x
where nx is the number of visits to lattice point x. We

define the random variable � ¼ t=ðS�Þ1=� where
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S � ¼ X1
x¼�1

ðnxÞ�: (2)

When � ¼ 1, S� is the total number of jumps madeP1
x¼�1 nx ¼ s. In the opposite limit � ! 0, S0 is the

distinct number of sites visited by the random walker
which is called the span of the random walk. We now
show that in the scaling limit

the PDF of � is l�;A;1ð�Þ; (3)

where l�;A;1ð�Þ is the one-sided Lévy PDF whose Laplace

� ! u pair is expð�Au�Þ. Namely, the heavy tailed dis-
tribution of the waiting times �x determines the statistics of
� through the characteristic exponent �, while the visita-
tion numbers fnxg provide the scaling through S�. By
definition, the Laplace � ! u transform of the PDF of � is

he��ui ¼
�
exp

�
� X1

i¼�1

ni�i

ðS�Þ1=�
u

��
: (4)

We average with respect to the disorder, namely, with res-
pect to the independent and identically distributed random

waiting times �x, and obtain he�u�i ¼ �1
x¼�1 ĉ ½ nxu

ðS�Þ1=��
where ĉ ðuÞ is the Laplace transform of the PDF of waiting

times c ð�xÞ.We use ĉ ðuÞ � expð�Au�Þ � 1� Au� þ � � �

he�u�i ��1
x¼�1 exp

�
�AðnxÞ�u�

S�

�
¼ e�Au� : (5)

Hence, the PDF of � is a one-sided Lévy law, Eq. (3). We
now invert the process fixing time t to find the PDF of S�

N tðS�Þ � t

�
ðS�Þ�1=��1l�;A;1

�
t

ðS�Þ1=�
�
: (6)

We can nowuse the operational timeS� to obtain the desired
diffusion front of the QTM; in other words, we get rid of
the disorder and focus only on Brownian motion. For an
ensemble of paths on many realizations of disorder, the
position of the particle is determined by the position of a
Brownian particle stopped at the random operational time
S�. To see this, note that in the originalmodel the probability
to jump left and right is 1=2which implies Brownian scaling
x� ffiffiffi

s
p

, and the laboratory time t enters through the random
fluctuations of s. Similarly, visitation numbers are de-
coupled from waiting times since the duration of sticking
times are not related to the probabilities of jumping left or
right and, hence, statistical properties of x are determined
by S� which as mentioned is itself a random variable
influenced by the disorder through the time transformation
Eq. (6). Next, we summarize the transformation to make it
more precise.

Mapping the QTM onto Brownian motion.—We first
define the new process (as an algorithm) and then return
to analytical calculations. To find hPðx; tÞi we follow six
steps. 1. Choose the laboratory time t which is a fixed
parameter. 2. Use a random number generator and draw
the stable random variable � from the one-sided Lévy PDF

l�;A;1ð�Þ. 3. With � and t determine the operational time

S� ¼ ðt=�Þ�. 4. Generate a simple symmetric random
walk on a lattice (probability 1=2 for jumping left and
right). Stop this Brownian process once its own S0

� reaches
the operational time S� set in step 3. 5. Record the position
x of the particle at the end of the previous step. 6. Return to
step 2. After this loop is repeated many times, we generate
a histogram of x. The histogram so created is identical to
hPðx; tÞi when t is large. On a computer, the second step is
implemented with a simple algorithm provided by
Chambers et al. [15]. Notice that with this exact scheme,
we have mapped the random walk in a random environ-
ment to a Brownian motion problem.
The diffusion front of the QTM hPðx; tÞi.—Let PS�

ðxÞ be
the PDF of x for the simple random walk on a lattice
(Brownian motion) stopped at the operational time S�.
Since the QTM dynamics can be separated into two distinct
processes: Brownian motion with operational time S�

(step 4) and the Lévy time transformation (steps 2 and 3)
we find

hPðx; tÞi �
Z 1

0
PS�

ðxÞN tðS�ÞdS� (7)

where N tðS�Þ is given in Eq. (6). For the mean field
version of the model (i.e., CTRW) replace S� with the
number of steps s of the Brownian motion, and then PS�

ðxÞ
is Gaussian as is well known [16]. From normal Brownian

motion we have the scaling behavior x / ðS�Þ1=ð1þ�Þ. To
see this we use (i) usual Brownian scaling x / s1=2 and

(ii) nx within a region jxj< s1=2 is roughly the number of
jumps made s divided by the number of sites in the ex-

plored region nx / s=s1=2 ¼ s1=2. Hence S� / ffiffiffi
s

p ðnxÞ� /
sð1þ�Þ=2 which gives x / ðS�Þ1=ð1þ�Þ. This scaling implies

PS�
ðxÞ ¼ 1

ðS�Þ1=ð1þ�Þ B�

�
x

ðS�Þ1=ð1þ�Þ

�
(8)

with B�ðzÞ a normalized nonnegative function. Define

the scaling variable � ¼ x=ðt=A1=�Þ�=ð1þ�Þ and hPðx; tÞi �
g�ð�Þ=ðt=A1=�Þ�=ð1þ�Þ which according to Eq. (7) is

g�ð�Þ ¼
Z 1

0
dyy�=ð1þ�ÞB�ð�y�=ð1þ�ÞÞl�;1;1ðyÞ: (9)

A general relation is found between the moments hjxjqi ¼
hR1

�1 jxjqPðx; tÞdxi of the original QTM and the moments
hjzjqi ¼ R1

�1 jzjqB�ðzÞdz

hjxjqi ¼ hjzjqi �ð q
1þ�Þ

��ð q�
1þ�Þ

�
t

A1=�

�
�q=ð1þ�Þ

: (10)

The new content of Eqs. (9) and (10) is that once we obtain
B�ðzÞ either from theory or simulations of Brownian
trajectories, we have a useful method to obtain exact
statistical properties of the diffusion front. Scaling in
Eq. (10) is very different than the mean field prediction

which gives hjxjqi / t�q=2 [1,2].
Generating Brownian trajectories on a lattice, we found

B�ðzÞ in Fig. 1, which shows an interesting transition from
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a V shape when� ! 0 to a Gaussian shape, which we soon
analyze analytically. With hz2i given in Table I and Eq. (10)
we get the mean square displacement of the QTM hx2i. We
then favorably compare the predictions of our theory with
simulations of the QTM in Fig. 2 (and analytical formulas
soon developed). In Fig. 3 we show g�ð�Þ and present
excellent agreement between our method and direct simu-
lation of the QTM. One advantage of our approach is that it
is capable of dealing with the critical slowing down
pointed out by Bertin and Bouchaud [14]. Briefly, QTM
simulations do not converge on reasonable computer time
scales for, say, �> 0:8. In contrast, our scheme quickly
converges since it is based on Brownian motion and there is
no need to generate disordered systems. More importantly
we now analyze Brownian motion analytically, obtain
B�ðzÞ in two important limits, and then with Eqs. (9) and
(10) provide solutions to the QTM.

The limit � ! 0 corresponds to strong disorder. To find
B0ðzÞ we consider Brownian motion stopped at ‘‘time’’ S0

where, as mentioned, S0 is the span of the random walk.
Consider PS0

ðS0 � nÞ where x ¼ S0 � n > 0 and for

simplicity we start with n ¼ 1. The Brownian particle after
the first step can be either on x ¼ 1 or x ¼ �1. If it is on
x ¼ �1 it must travel a distance S0 to reach its destination
x ¼ S0 � 1 and the span is S0. On the other hand if it
jumps to x ¼ 1 the distance the particle must travel is
S0 � 2 and the span must still be S0. Hence PS0

ðS0�1Þ¼
½PS0

ðS0ÞþPS0
ðS0�2Þ�=2. More generally

PS0
ðS0 � nÞ ¼ 1

2
½PS0

ðS0 � n� 1Þ þ PS0
ðS0 � nþ 1Þ�;

(11)

and for the boundary term PS0
ðS0Þ ¼ ½PS0

ðS0 � 1Þ þ
PS0�1ðS0 � 1Þ�=2. Equation (11) is easily solved PS0

ðxÞ ¼
jxj

S0ðS0þ1Þ for�S0 � x � S0 and x 2 Z. In the limit S0 � 1

we have for the scaled variable z ¼ x=S0 the V shape PDF
[see Fig. 1]

-3 -2 -1 0 1 2 3

z

0

0.4

0.8

B
α
(z

)

α=0.5
α=0
α=0.9
Eq. (12)
Eq. (15)

FIG. 1 (color online). The PDF B�ðzÞ exhibits a transition
between a Gaussian shape when � ! 1 to a V shape when
� ! 0. Simulations of Brownian motion on a lattice yield
excellent agreement with theoretical predictions Eqs. (12) and
(15) without fitting.
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FIG. 2 (color online). The mean square displacement of the
QTM versus time. Numerical data match perfectly our theory
(the lines plotted with hz2i in Table I) and analytical formulas
Eq. (13) for � ¼ 0:2 and Eq. (16) for � ¼ 0:4, 0.6, 0.8.

TABLE I. Simple Brownian simulations on a lattice give hz2i,
which according to Eq. (10) yield hx2i for the QTM.

� 0 0.2 0.4 0.6 0.8 1

hz2i 0.5 0.67 0.81 0.91 0.96 1
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(b) α=0.5
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(c) α=0.75

FIG. 3 (color online). The diffusion front of QTM (squares)
match perfectly the presented theory (circles) and analytical
predictions (lines) Eqs. (9), (14), and (15).
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lim
�!0

B�ðzÞ ¼
� jzj for jzj< 1
0 otherwise:

(12)

This V shape reflects the tendency of a Brownian particle
to reach a large span S0 when it is far from the origin.

According to Eq. (10) the even moments hx2qi for
the random walk in the QTM are given once we obtain
hz2qi. In the limit � ! 0 we find using Eq. (12) hz2qi ¼
2
R
1
0 z

2qzdz ¼ ð1þ qÞ�1; hence, with Eq. (10) we have for

small �

hx2i ’ 1

2

�ð 2
1þ�Þ

��ð 2�
1þ�Þ

�
t

A1=�

�
2�=ð1þ�Þ

(13)

which is tested in Fig. 2. Inserting hz2qi ¼ ð1þ qÞ�1 in
Eq. (10) we obtain the moments hx2qi of the QTM.
Straightforward analysis then gives

lim
�!0

g�ð�Þ ¼ e�j�j � j�jE1ðj�jÞ (14)

where E1ð�Þ ¼
R1
� ðe�t=tÞdt is the tabulated exponential

integral. This scaling function was obtained by Monthus
[13] using an RGmethod which is exact in the limit� ! 0.

Approaching the weak disorder limit � ! 1.—For
� ¼ 1 we have S1 ¼

P1
x¼�1 nx ¼ s; namely, S1 is non-

random since it is equal to the number of steps made.
Therefore, when � is close enough to 1 we may neglect
fluctuations and S� ¼ hS�i. In a longer publication,

we will show that hS�i ¼ C�sð1þ�Þ=2 with C� ¼
2ð�þ3Þ=2�ð1 þ �=2Þ=½ ffiffiffiffi

�
p ð1 þ �Þ�. As is well known, the

PDF of finding the Brownian particle on x after s jumps is

the Gaussian PsðxÞ ¼ expð�x2=2sÞ= ffiffiffiffiffiffiffiffiffi
2�s

p
; hence, the

change of variables to S� gives

B�ðzÞ � ½2�=ðC�Þ2=ð1þ�Þ��1=2 exp

�
�ðC�Þ2=ð1þ�Þz2

2

�
:

(15)

It follows that hz2i � ðC�Þ�2=ð1þ�Þ; hence, for the QTM

hx2i ’ ðC�Þ�2=ð1þ�Þ �ð 2
1þ�Þ

��ð 2�
1þ�Þ

�
t

A1=�

�
2�=ð1þ�Þ

: (16)

In Fig. 1 B�ðzÞ obtained from Brownian simulations is
favorably compared with Eq. (15) for � ¼ 0:9.
Surprisingly, as we show in Fig. 2, Eq. (16) works very
well even for � ¼ 0:4. With Eqs. (9) and (15) and the
steepest descent method we find for � � 1

g�ð�Þ � b1�
�2ð1��Þ=ð3��Þe�b2�

2ð1þ�Þ=ð3��Þ
(17)

with b1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ�Þ=½2��ð3��Þ�p

D, b2¼½ð3�2�Þ=2�D2,

and D ¼ ½ð1þ �Þ1����C��1=ð3��Þ which approach the
expected normal Gaussian limit when � ! 1. In the oppo-

site limit ��1 g�ð�Þ�1=
ffiffiffiffiffiffiffi
2�

p �2ð��1Þ=2½ð1þ�Þ=��
fC�=�½ð1��Þ=2�g��þ��� .

The method presented in the Letter could be applied to
many other situations. It is easily extended to higher di-
mensions, for transport in biased random walks and to the

investigation of irreproducibility of time averages in single
molecule experiments [4,17]. As mentioned, randomwalks
in configuration space describe glassy dynamics and cur-
rently mean field theories are used for such systems [5,6],
e.g., dynamics among metabasins describing supercooled
liquids [7]. The mean field is expected to work only for a
system with a very high connectivity, namely, a jump from
one metabasin to any other is possible in principle. If this
picture is abandoned, one has to take into account the
connectivity of the energy landscape and the possibility
of closed paths. More practically one may use our method
to calculate measurable quantities like aging correlation
functions which will differ from the mean field prediction.
This might lead to a measurable classification of dynamics
of many complex systems in terms of mean field or non-
mean-field behaviors.
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