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After a quench, observables in an integrable system may not relax to the standard thermal values, but

can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett.

98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-

dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce

a microcanonical version of the GGE and provide a justification of the GGE based on a generalized

interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain

thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core

bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (� 1010

eigenstates) validate our approach.
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Once only of theoretical interest, integrable models of
one-dimensional (1D) quantum many-body systems can
now be realized with ultracold atoms [1]. The possibility
of controlling the effective dimensionality and the degree
of isolation have allowed access to the quasi-1D regime
and to the long coherence times necessary to realize inte-
grable models. Additionally, advances in the cooling and
trapping of atoms have led to increased interest in dynam-
ics following quantum quenches, where a many-body
system in equilibrium is exposed to rapid changes in the
confining potential or interparticle interactions.

In general, in integrable quantum systems that are far
from equilibrium, observables cannot relax to the usual
thermal state predictions because they are constrained by
the nontrivial set of conserved quantities that make the
system integrable [2]. Relaxation to nonthermal values
were recently observed in a cold-atom system close to
integrability [3]. At integrability, it is natural to describe
the observables after relaxation by an updated statistical
mechanical ensemble: the generalized Gibbs ensemble
(GGE) [4], which is constructed by maximizing the
entropy subject to the integrability constraints [5]. In recent
studies of integrable systems [4,6,7], the GGE has been
found to accurately describe various observables after
relaxation, but a microscopic understanding of its origin
and applicability remains elusive. In particular, an impor-
tant question remains: how is it that expectation values
after relaxation can be described by an ensemble with
exponentially fewer parameters than the size of the
Hilbert space? The full dynamics are determined by as
many parameters as the size of the latter. At a microscopic
level, thermalization for nonintegrable systems can be
understood in terms of the eigenstate thermalization
hypothesis (ETH) [8,9], which, however, breaks down as
one approaches integrability [10].

This Letter is devoted to the study of how generalized
thermalization, in the sense of relaxation to the predictions
of the GGE, takes place in integrable systems. Answering
this question is important not merely because of its rele-
vance to the foundations of statistical mechanics in inte-
grable systems, but also because it has become necessary
to understand recent experiments with ultracold gases in
quasi-1D geometries. For integrable systems, we compare
the predictions of quantum mechanics with those of vari-
ous statistical ensembles. In particular, we introduce a
microcanonical version of the GGE, which we use to
show that relaxation to the GGE can be understood in
terms of a generalized view of the ETH.
We study the dynamics following an instantaneous

quench of 1D hard-core bosons on a lattice, which is fully
integrable. The Hamiltonian is given by

Ĥ¼�J
XL�1

i¼1

ðb̂yi b̂iþ1þH:c:ÞþVð�ÞX
L

i¼1

ði�L=2Þ2n̂i; (1)

where J is the hopping parameter; Vð�Þ gives the curvature
of an additional parabolic trapping potential for atoms on a

lattice with lattice constant a; b̂yi ðb̂iÞ is the hard-core

bosonic creation (annihilation) operator; and n̂i ¼ b̂yi b̂i is
the number operator. In addition to the standard commu-
tation relations for bosons, hard-core bosons satisfy the

constraint b̂y2i ¼ b̂2i ¼ 0, which forbids multiple occu-
pancy of the lattice sites. This Hamiltonian can be mapped
onto noninteracting fermions through the Jordan-Wigner
transformation [11], and the many-body eigenstates can be
constructed as Slater determinants of the single-particle
fermionic eigenstates [12].
We will focus on the behavior of the momentum distri-

bution function, hn̂ki ¼ P
l;me

�ikðl�mÞhc jb̂ymb̂ljc i=L, for

system sizes ranging from N ¼ 5 bosons on L ¼ 25 lattice
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sites to N ¼ 10 bosons on L ¼ 50 lattice sites (� 1010

eigenstates). Initially, we prepare the system in the ground
state jc 0i of a 1D lattice with hard-wall boundary condi-
tions and an additional harmonic potential, with trapping
strengthV ¼ V0. At time � ¼ 0, the harmonic trap is turned
off, Vð� � 0Þ ¼ 0, and the state jc ð�Þi evolves under the
influence of the final Hamiltonian. Hereafter, we refer to
this state as it is immediately after the quench as the

‘‘quenched state.’’ Its time evolution is given by jc ð�Þi ¼P
�c�e

�iE��=@j�i, where j�i are the energy eigenstates of
the final Hamiltonian with energies E�, and c� ¼ h�jc 0i
are the overlaps between the eigenstates of the final
Hamiltonian and the quenched state. After relaxation,
assuming the degeneracies in energy levels are irrelevant,
the expectation value of an observable is expected to be
given by the so called diagonal ensemble (DE) [7,9,10]

hÂiDE ¼ lim
�!1

1

�

Z �

0
d�0hc ð�0ÞjÂjc ð�0Þi

¼ X
�

jc�j2h�jÂj�i:

We have checked numerically that, despite the integrability
of our model, nk relaxes to the DE prediction, with small
fluctuations around this result [13].

Figure 1 shows the momentum distributions, nk, before
and after the quench, for two different initial trap strengths,
which correspond to different energies per particle, ", after
the quench. These results are compared with those of
various ensembles of statistical mechanics. The microca-
nonical ensemble (ME) is one in which all eigenstates in

the relevant energy window have identical weights.
Within the microcanonical ensemble, the expectation

value of a generic observable A is hÂiME ¼ N�1
";�MEP

�;j"�"�j<�ME
h�jÂj�i, where �ME is small, but still much

greater than the mean many-body level spacing. N";�ME

is the number of eigenstates in the energy window
j"� "�j< �ME. We have checked that the results reported
here are nearly independent of the specific value of �ME.
The GGE is a grand-canonical ensemble that maximizes
the entropy subject to the constraints associated with
nontrivial conserved quantities of the quenched state. The
density matrix takes the form [4]

�̂ GGE ¼ Z�1
G e�

P
�nÎn ; ZG ¼ Tr½e�

P
�nÎn�; (2)

where fÎng, n ¼ 1; . . . ; L, are the conserved quantities. In
our systems, these correspond to the occupation of the
single-particle eigenstates of the underlying noninteracting
fermions to which hard-core bosons are mapped, and f�ng
are Lagrange multipliers fixed by the initial conditions,

�n ¼ ln½ð1� hc 0jÎnjc 0iÞ=hc 0jÎnjc 0i� [4]. Observables

within this ensemble are then computed as hÂiGGE ¼
Tr½Â�̂GGE� following Ref. [12].
As a step towards understanding the GGE as well as

developing a more accurate description of isolated
integrable systems after relaxation, we introduce a micro-
canonical version of the GGE, which we call the general-
ized microcanonical ensemble (GME). Like theME, where
states within a small energy window contribute with equal
weight, within the GME we assign equal weight to all
eigenstates whose values of the conserved quantities are
close to the desired values. The expectation value
of a generic observable within the generalized microca-

nonical ensemble is given by hÂiGME ¼ N �1
fIng;�GMEP

�;��<�GME
h�jÂj�i, where P

�;��<�GME
is a sum over ei-

genstates that are within the GME window and N fIng;�GME

is the number of states within that window and �� is a
measure of the distance of eigenstate � from the target
distribution.
In order to construct the GME, we include eigenstates of

the Hamiltonian with a similar distribution of conserved
quantities which once averaged reproduce the values of the
conserved quantities in the quenched state. This approach
is characterized by three ingredients [14]: (i) The ordered
distribution (from largest to smallest) of the conserved
quantities in the DE, hIniDE � P

�jc�j2In;� [as in

Figs. 1(e) and 1(f)], (ii) a target distribution of the nonzero
expectation values of the conserved quantities fI�n�i ¼ 1g,
where the values of n�i (i ¼ 1; . . . ; N) are chose to describe
the distribution In in a coarse-grained sense [15], and
(iii) for each individual many-body eigenstate, the distance

from the target state, ��, which we define as �� ¼ ½1N �P
N
i¼1 In�i ðni;� � n�i Þ2�1=2. Here ni;� (i ¼ 1; . . . ; N) are the

single-particle states occupied in eigenstate �, and In�i are

the interpolated values of hIniDE, evaluated at n�i .
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FIG. 1 (color online). (a),(b) Momentum distribution of the
initial state (init), diagonal (DE), generalized microcanonical
(GME), generalized Gibbs (GGE), and the microcanonical (ME)
ensembles. (c),(d) Relative difference of the GME, GGE and ME
from the DE. (e),(f) Conserved quantities, hÎni, in the quenched
state (identical to the DE), GME and ME. hIni are ordered in
descending occupations in the quenched state. L ¼ 50, N ¼ 10,
�ME ¼ 0:05J, �GME ¼ 0:8. (a),(c),(e) " ¼ 0:72J, V0 ¼ 0:029J.
(b),(d),(f) " ¼ 1:52J, V0 ¼ 0:125J.
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The definition of �� is not unique and several variants that
do not change our conclusions were also considered [13].

To better visualize the differences between the results of
thevarious ensembles in Figs. 1(a) and 1(b), we have plotted
�hnkistat ¼ ðhn̂kiDE � hn̂kistatÞ=hn̂kiDE, where ‘‘stat’’ stands
for ME, GGE, or GME in Figs. 1(c) and 1(d). For weaker
initial confinements [smaller "—Fig. 1(c)], the GME is
practically indistinguishable from the diagonal distribution.
Both the GME and the GGE accurately capture the tails of
nk, while the thermal ensemble does not. For tighter initial
traps [greater "—Fig. 1(d)] all four ensembles are very
similar (note the scale), suggesting that nk in the final steady
state is indistinguishable from that of the thermal state.

The close agreement between DE and ME results in
Fig. 1(b) raises the question: how can an integrable system
thermalize, given the constraints imposed by the complete
set of conserved quantities? We conjecture that if the
values of the conserved quantities in the quenched
state are similar to those of the ME, then the latter will
accurately describe observables after relaxation. This may
occur for a variety of quenches.

In Figs. 1(e) and 1(f), we plot the values of the conserved
quantities in the quenched state and compare them with the
expectation values of those quantities in different statistical
ensembles. (By definition, the distribution of conserved
quantities in the DE and GGE are identical to that of the
quenched state.) Figure 1(e) shows that the microcanonical
values of the conserved quantities are clearly different from
the values in the quenched state, while in Fig. 1(f) they are
very similar. This supports our conjecture above, and dem-
onstrates that thermalization can occur in integrable sys-
tems for special initial conditions. Additionally, the GME
reproduces the correct distribution of the conserved quan-
tities supporting the validity of ourmethod for generating it.

To quantify the above observations, and to understand
what happens in the thermodynamic limit, we have studied
the difference between the predictions of the DE and
the statistical ensembles for different system sizes.
We compute the integrated relative differences,
ð�nkÞstat ¼

P
kjhn̂kiDE � hn̂kistatj=

P
khn̂kiDE, where again

stat stands for ME, GGE, or GME.
In Fig. 2(a), we plot ð�nkÞME as a function of the final

energy per particle, ", for different lattice sizes, L. To
perform finite-size scaling, " and the filling factor (� ¼
N=L ¼ 0:2) are held constant as L changes. Figure 2(a)
shows that for " & 1:3J the difference between the nk in
the DE and the ME increases with increasing L, indicating
that the difference persists in the thermodynamic limit. For
" * 1:3J, the opposite behavior is observed. From our pre-
vious discussion, one expects that ð�nkÞME should closely
follow the behavior of the integrated differences between the
conserved quantities in the quenched state and the ME,
ð�InÞME ¼ P

njhIniDE � hIniMEj=PnhIniDE. This is seen
by comparing Figs. 2(a) and 2(c), which leads us to conclude
that nk need not relax to the standard thermal prediction,
except when ð�InÞME becomes negligible. Qualitatively
similar results were obtained in the canonical ensemble [13].

On the other hand, in Fig. 2(b) one can see that the
differences between nk in the diagonal and generalized
microcanonical ensembles are very small and decrease
with increasing system size, so that the former successfully
describes this observable after relaxation. In the case of the
GGE [Fig. 2(d)], ð�nkÞGGE is in general larger than
ð�nkÞGME, which is to be expected since the GGE is a
grand-canonical ensemble. As the system size increases
ð�nkÞGGE ! 0 as L��, where � � 0:73 [inset of Fig. 2(d)]
and slightly depends on the energy [13].
The question that remains to be answered is why the

generalized Gibbs and the generalized microcanonical
ensemble are able to describe the nk after relaxation, i.e.,
why hn̂kiGGE ¼ hn̂kiGME ¼ hn̂kiDE � P

�jc�j2h�jn̂kj�i.
Note that whereas hn̂kiGGE and hn̂kiGME are entirely deter-
mined by the L independent values of the conserved
quantities in the quenched state, hn̂kiDE is determined by
the exponentially larger ( LN ) values of the coefficients c�.

To address this question, we perform a spectral decom-
position of hn̂kiDE and hn̂kiGME. Figure 3 displays a coarse-
grained view of the weight which eigenstates with a given
zero momentum occupancy hn̂k¼0i� ¼ h�jn̂k¼0j�i con-
tribute to the DE [Fig. 3(a)] and the GME [Fig. 3(b)].
The correlation between the results in both figures is
apparent. However, it is not clear why the details contained
in the overlaps c� are completely washed out so that the
DE and the GME results coincide, while they are different
from those in the ME. In the inset of Fig. 3(a), we plot a
histogram of the values of nk¼0 for the DE, GME and the
ME. Clearly the histograms for the DE and GME have a
similar mean but different widths, while the ME has a
different mean and width [13].
Ultimately, one is interested in what happens in

the thermodynamic limit. For each k, we define the
width of the distribution of hn̂ki� for each ensemble as
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FIG. 2 (color online). (a) ð�nkÞME versus energy per particle of
the quenched state. �ME ¼ 0:05J. (b) ð�nkÞGME vs ", �GME ¼
0:8. (c) Integrated difference between the conserved quantities in
the quenched state and the ME, ð�InÞME. (d) ð�nkÞGGE vs ".
Inset: ð�nkÞGGE vs L�0:73 for " ¼ 1:07J, where a fit to
ð�nkÞGGE ¼ zL�� gives � ¼ 0:73� 0:02.
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�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn̂2ki � hn̂ki2

q
. The inset of Fig. 3(b), shows �k

within the DE and the GME versus L�1. The scaling is
depicted for two k values and clearly shows that the widths
of both distributions vanish in the thermodynamic limit.
This demonstrates that the overwhelming majority of the
states selected by the DE as well as by the GME, which
have similar values of the conserved quantities, have iden-
tical expectation values of nk. This is why details of the
distribution of c� no longer matter as L increases. We note
that with increasing L, the number of eigenstates contained
in the generalized microcanonical window increases expo-
nentially; however, the ratio of the number of states in the
GME and the ME vanishes [13].

The findings above provide a generalization of the ETH
introduced previously to understand thermalization in non-
integrable systems [8,9]. The ETH states that the expecta-
tion values of few-body observables in generic systems do
not fluctuate between eigenstates that are close in energy.
Thus all eigenstates within a microcanonical window have
essentially the same expectation values of the observables,
and one can say that thermalization occurs at the level of
eigenstates. As seen in Fig. 3, hn̂ki� exhibits large

eigenstate-to-eigenstate fluctuations in our integrable sys-
tem, showing that ETH is invalid. However, by selecting
eigenstates with similar conserved quantities, ETH is
restored, although in a weaker sense: the overwhelming
majority of eigenstates with similar conserved quantities
have similar values of nk. These results pave the way to a
unified understanding of thermalization in generic
(nonintegrable systems) and its generalization in integrable
systems. This opens many new questions, such as whether
the concepts of typicality [16] and thermodynamics [17]
can be generalized to isolated integrable systems.
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