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Spin-1 condensates in the polar (antiferromagnetic) phase in two dimensions are shown to undergo a

transition of the Ising type, in addition to the expected Kosterlitz-Thouless (KT) transition of half-vortices,

due to the quadratic Zeeman effect. We establish the phase diagram in terms of temperature and the

strength of the Zeeman effect using Monte Carlo simulations. When the Zeeman effect is sufficiently

strong, the Ising and KT transitions meet. For very strong Zeeman field the remaining transition is of the

familiar integer KT type.
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Ultracold atomic gases represent a new frontier in quan-
tum magnetism, where optical traps allow for the possibil-
ity of spontaneous ordering of the atoms’ spin. In
particular, systems of spinful bosons allow for the possi-
bility of studying the interplay of Bose condensation (or
superfluidity) and magnetic ordering in spinor conden-
sates. In this Letter we discuss one of the simplest such
systems: the polar (or antiferromagnetic) spin-1 conden-
sate in a magnetic field, realized in a gas of 23Na atoms [1].
We show that there are two types of defects: vortices and
domain walls, or strings. Some years ago a number of
authors [2–4] studied the interesting phase diagram that
results from the competition between vortex interactions
and string tension in a simple statistical mechanical model.
Our goal here is to show that the same physics can arise in
an atomic gas from quite different microscopic origins.

Consider a dilute gas of spin-1 bosons, described by a
spinor �ðrÞ. The character of the magnetic order that
develops at low temperature depends upon the interatomic
interactions, described by two kinds of quartic terms [5,6],
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Z
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�
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2
ð�y�Þ2 þ c2

2
ð�yS�Þ2

�
; (1)

corresponding to a density-density and spin-spin interac-
tion, respectively. Here S are the spin-1 angular momen-
tum matrices. It is convenient to work in terms of Cartesian
components, where ðSiÞjk ¼ �i�ijk. Writing � ¼ aþ ib,

where a and b are real vectors, the second term in Eq. (1)
becomes 2c2ða� bÞ2. We see that for c2 < 0 the energy is
minimized at fixed density for a, b perpendicular and
equal, while for the case c2 > 0, which will be our primary
concern, a and b are parallel. These two possibilities are
called the ferromagnetic and polar states, respectively.

In the mean-field description sketched above, a nonzero
expectation value h�i, or equivalently off-diagonal

long-range order in the density matrix �abðr; r0Þ �
h�y

a ðrÞ�bðr0Þi, simultaneously describes Bose condensa-
tion and the breaking of rotational symmetry. It is natural to
ask whether these two phenomena necessarily go hand in
hand, and, if not, which occurs first as the temperature is

lowered. We will show that in the two-dimensional polar
system (c2 > 0, appropriate to 23Na), such an intermediate
phase can arise, possessing quasi-long-range order in the
singlet pair amplitude � ��—a pair superfluid (PS)—
while the spin remains disordered. Spin ordering occurs
in a second transition at a lower temperature. This is
possible when there is a small anisotropy originating
from the quadratic Zeeman effect, permitting an Ising
transition where none would be allowed at zero field by
the Mermin-Wagner theorem. At larger anisotropies the PS
phase vanishes. The resulting phase diagram, shown in
Fig. 1 for our Monte Carlo simulations of a particular
model to be described shortly, is our principal finding.
The prospects for observing the transitions and the inter-
mediate phase will be discussed in the conclusion.

FIG. 1 (color online). The phase diagram for a two-
dimensional polar condensate with quadratic Zeeman effect.
The dashed red line and the solid blue line mark the KT
transition and Ising transition, respectively. In the normal phase
(N) half-vortices of equal or opposite charge are joined by
domain walls (blue lines). In the superfluid phase (S) vortices
of opposite charge are bound (red ellipse) and there are no
domain walls. In the pair superfluid phase (PS), q=t & 4, vorti-
ces are bound but domain walls remain.

PRL 106, 140402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 APRIL 2011

0031-9007=11=106(14)=140402(4) 140402-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.140402


Let us begin by discussing the phases in Fig. 1 in
qualitative terms. The superfluid transition of scalar bosons
in two dimensions is of the Kosterlitz-Thouless (KT) type,
mediated by the binding of vortices, suggesting that we
consider the analogous defects of a polar condensate. In the
polar state we may write � ¼ nei�, where n is a real unit
vector and � is a phase variable (and we have we set the
density equal to unity). In this representation taking
n ! �n and � ! �þ � maps the spinor to itself. Thus
the elementary vortex has circulation h

2m , or one half of

the usual quantum of circulation, and coincides with a
‘‘disclination’’ in the vector n.

The character of these point defects is dramatically
altered by the inclusion of the Zeeman energy, which has
the form

HZ ¼
Z

dr�y½pSz þ qS2z��: (2)

Here p and q describe the linear and quadratic effects
(q > 0). We will be concerned with a system of zero total
Sz, so that the linear term has no effect: the case of nonzero
Sz will be discussed briefly at the end. In the ðn; �Þ repre-
sentation the quadratic effect contributes an energy per
particle of qð1� n2zÞ, amounting to an easy-axis anisotropy
for the n variable.

At this point, it is convenient to introduce a simple
lattice model which will be useful for our numerical simu-
lations:

H ¼ Ht þHZ; HZ ¼ �q
X
i

n2z;i;

Ht ¼ �t
X
hiji

½�y
i ��j þ c:c:� ¼ �2t

X
hiji

ni � nj cosð�i � �jÞ;

(3)

with hopping parameter t. The corresponding continuum
model for the spinor takes the form

H !
Z

ddr½tðrnÞ2 þ tðr�Þ2 � qn2z� (4)

(we take the lattice spacing equal to unity). Notice that the
superfluid and magnetic degrees of freedom appear to
decouple in this expression. The only coupling is global,
in that half-vortex or disclinations are allowed. Thus, when
these defects are absent (or bound) the n degrees of free-
dom are described by the familiar Heisenberg model with
anisotropy.

In Eq. (4), q appears as a ‘‘mass’’ for deviations from the
easy axis, meaning that such deviations are confined to

‘‘domain walls’’ of thickness / q�1=2 that have an energy

per unit length—or tension—/ q1=2. Furthermore, these
domain walls can terminate on the half-vortices discussed
above; see Fig. 2.

Now we are in a position to understand the structure of
the phase diagram. At q ¼ 0, the only finite temperature
transition is a KT transition at T ¼ TKT � t�=8 due to
binding of the half-vortices, which have lower energy than

integer vortices [7,8]. The distinctive features of this tran-
sition will be discussed later. After the half-vortices be-
come bound, the description of the n degrees of freedom
coincides with that of the ordinary Heisenberg model, and
no order appears at finite temperature. For q nonzero but
small the domain walls connecting half-vortices have too
little tension to affect the KT transition. Once the half-
vortices have become bound, the domain walls are closed
but otherwise fluctuating, and can disappear in an Ising
transition at a lower temperature. An alternative way to
think about this second transition is in terms of the
Heisenberg model, which has an Ising transition in the
presence of an easy-axis anisotropy. Finally, at large q,
the n vector is pinned to the �ẑ direction and the model
Eq. (3) coincides with the usual XY model after shifting
�i ! �i þ �nz;i=2. In this regime there is a single KT

transition of integer vortices. In terms of the original spin
states of the boson, only the Sz ¼ 0 state is occupied, so
that the behavior of a scalar condensate is recovered. An
earlier investigation considered only q ¼ 0 and large q, so
that the interesting interpolation between these two limits
went unnoticed [7]. We note parenthetically that the case
q < 0—harder to realize experimentally—was also studied
recently [9].
The region occupied by the intermediate PS phase in the

model Eq. (3) is very small: its presence could not be
unambiguously determined by Monte Carlo simulations
on systems of up to 40� 40 sites. This is likely due to
the Ising transition line being very steep near q ¼ 0.
Standard arguments for the scaling of the mass (correlation
length) with temperature [10] show that T ��1= logðqÞ
for small q. We therefore study a generalized model with a
‘‘pair hopping’’ term

Hu ¼ � u

2

X
hiji

ð�y
i ��y

i Þð�j ��jÞ þ c:c: (5)

Including Hu in Eq. (4), we see that a finite u only stiffens
the phase variable, changing the coefficient of the � term
from t to tþ 2u. The half-vortex KT transition then

FIG. 2 (color online). A half-vortex pair connected by a do-
main wall (shaded region) in the n vector [light gray (red)]
arising from easy-axis anisotropy (the easy axis is horizontal).
The dark gray (blue) arrows denote the configuration of the
phase �.
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occurs at the higher temperature T � ðtþ 2uÞ�=8,
increasing the size of the PS phase. In the following we
take u ¼ 2t as then the PS phase is clearly visible even for
moderate system sizes. Experimentally a similar result
could be achieved by increasing c2 until 2-body singlet
bound states form at q ¼ 0. Then n is disordered even at
T ¼ 0 (enlarging the PS phase) until q is large enough
to cause a quantum phase transition into the S phase.
Photoassociation data suggest that the required condition,
a divergent singlet scattering length, has been achieved
already via optical Feshbach resonance (Fig. 7 of
Ref. [11]).

For q ! 1 the model is equivalent to the Hamiltonian of
the generalized XY model (see, e.g., [2–4])

H�¼�X
hiji

½�cosð�i��jÞþð1��Þcosð2�i�2�jÞ�; (6)

where conventionally � 2 ½0; 1�. This model also exhibits
a PS phase. Our choice of parameters corresponds to the
case � ¼ 0:5 so that, according to the phase diagram in
Ref. [4] the large q limit of our model with u ¼ 2t still has
a single transition (hence u itself does not produce a PS
phase for q ! 1). As q is reduced, this transition should
split in two.

We study the phase diagram of the model H ¼ Ht þ
Hu þHZ via Monte Carlo simulations (using tools from
the ALPS libraries [12]) on square systems of L� L sites
with periodic boundary conditions. As there are three
continuous parameters per site, a large number of sweeps
of the lattice are required to equilibrate and collect reliable
data, even for small system sizes (> 106 for L ¼ 8). We
performed simulations for L ¼ 8; 16; 24; 32 with some
extra data collected for L ¼ 40; 48 in special cases. To
detect two separate transitions, we consider the specific
heat capacity in addition to the Binder cumulants for both
the spinor and the phase.

A phase transition of the Ising type at T ¼ Tc should
present itself as a sharp peak in the specific heat C for finite

size simulations. KT transitions are also accompanied by a
peak in C, above TKT, associated with the increase in
entropy when vortices unbind. Figure 3 shows that as q
approaches a critical value, q� 4, the sharper lower tem-
perature Ising peak and the broader higher temperature KT
peak merge.
Better quantitative information is given by the Binder

cumulants [13]. The Binder cumulant for the spinor is

B½�� ¼ hð�y ��Þ2i
hð�y ��Þi2 ; (7)

where � ¼ P
i�i=N. An example plot is given in Fig. 4.

We also calculate the cumulant for the z component:

B½�z� ¼ hð�y
z�zÞ2i

hð�y
z�zÞi2

: (8)

These cumulants are sensitive to order and Ising-like order
in�, respectively. On the other hand, they are not sensitive
to order (or quasi-long-range order) in the phase alone.
Instead, to look for order in expð2i�Þ, we use the cumulant

B½2�� ¼
P

ijklhexp½2ið�i � �j þ �k � �lÞ�i
ðPijhexp½2ið�i � �jÞ�iÞ2

: (9)

In the vicinity of a conventional, continuous transition
at Tc, and where finite size scaling holds, the Binder
cumulant for a suitable variable can be written in the form

BL ¼ ~Bð ~TL1=�Þ; (10)

where ~B is a universal scaling function, and ~T ¼
ðT � TcÞ=Tc. From this we conclude that Binder cumulants
for different L cross at ~T ¼ 0, providing an accurate
method for determining Tc. For KT transitions, Eq. (10)
does not hold. However, the crossings for different L still
occur in a suitably narrow range [14], allowing us to
estimate TKT. Figure 1 shows Tc and TKT as found using
the above cumulants. The values of Tc provided by B½��
and B½�z� agree within error over the full range of q
investigated. As a further check on the nature of the PS
to S transition, we extract the critical exponent � by

FIG. 3 (color online). The specific heat C, for L ¼ 16, show-
ing the merging of the peaks associated with the two transitions
as q increases. Inset: C for different system sizes at q ¼ 1.

FIG. 4 (color online). Intersection of the Binder cumulants
B½�� for different L at q ¼ 1. Inset: Enlarged region of inter-
section.
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calculating dBL=dT at Tc. We find that � is at least con-
sistent with the Ising value � ¼ 1, within error. An ex-
ample of the resulting data collapse is shown in Fig. 5.

Following Ref. [7] we also examine the helicity modulus
(also known as spin stiffness or superfluid density) �,
defined as the change in free energy due to a twist in
boundary conditions along some direction x̂. A KT phase
transition at TKT is reflected in the helicity in the form of a
jump proportional to TKT (see, e.g., [10]). When the tran-
sition is driven by half-integer vortices, this jump will be
4 times larger than for the integer case [15]:

��1=2KT ¼ 4��KT ¼ 8TKT

�
: (11)

The observed position of the helicity jump as a function of
q and T confirms that the transition temperature provided
by B½2�� represents TKT with reasonable accuracy. As in
Ref. [7] we find that the N to PS transition is due to the
presence of half-vortices (Fig. 6). In fact, setting u ¼ 2t
means that the transition is facilitated by half-vortices even
for q ! 1. This is consistent with Eq. (6) for � ¼ 0:5. In
that case half-vortices still exist, though they occur in the
phase alone and the line defects that join them have energy
independent of q [4]. As u approaches zero the integer KT
transition at large q should be recovered.

We now return to the case of finite Sz. As in the case of
an antiferromagnet with an easy-axis anisotropy, increas-
ing Sz leads to a spin-flop transition between a state with n
aligned in the z direction to one where it lies in the x-y
plane. Such a transition is described by a bicritical point of
the Heisenberg type, which in d ¼ 2 must occur at T ¼ 0
[16,17]. At finite T, the low Sz Ising and high Sz, xy
ordered, phases are separated by a normal region. The
high Sz phase resembles the q < 0 case discussed in
Ref. [9].

In conclusion we have argued that polar condensates
undergo separate KT and Ising transitions when subjected
to the quadratic Zeeman effect. We have supported this

finding with Monte Carlo simulations. Aside from the
thermodynamic signatures discussed here, the PS phase
should be visible in the correlation function of occupancies
of different momentum states, as measured by the noise
correlations in an image of the expanded gas:
h�nðk1Þ�nðk2Þi/ jk1þk2j4��2 with � ¼ T=ð2��Þ [18].
The authors acknowledge support of the NSF under
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FIG. 5 (color online). Left: Intersection of the Binder cumu-
lants B½�� for different L at q ¼ 1. Right: The same data but
plotted against ðT � TcÞL. Note that the data for L ¼ 8 are not
within the range of validity for finite size scaling.

FIG. 6 (color online). Helicity for q ¼ 1. The upper and lower
dashed lines are 8T=� and 2T=�, respectively. The jump is
clearly commensurate with �� ¼ 8T=�.
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