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We study the backaction of a nearby measurement device on electrons undergoing coherent transfer via
adiabatic passage (CTAP) in a triple-well system. The measurement is provided by a quantum point
contact capacitively coupled to the middle well. We account for this continuous measurement by treating
the whole {triple-well + detector} as a closed quantum system. This leads to a set of coupled differential
equations for the density matrix of the enlarged system which we solve numerically. This approach allows
us to study a single realization of the measurement process while keeping track of the detector output,
which is especially relevant for experiments. In particular, we find the emergence of a new peak in the
distribution of electrons inside the detector, accompanied by a drop in the fidelity of the protocol.
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Solid-state based quantum computer architectures are
currently the focus of active experimental and fundamental
research, as many of them offer the promise of being
scalable, therefore opening the way to significant improve-
ments in efficiency of certain algorithms. An essential
feature of many proposals for scalable quantum computa-
tion is the coherent transport over large distances of quan-
tum information, encoded, e.g., in electron spins.

A recent method of all-electrical population transfer for
electrons has been suggested in solid-state systems con-
sisting of a chain of potential wells [1]. Termed coherent
transfer by adiabatic passage or CTAP, this technique is a
spatial analogue of the STImulated Raman Adiabatic
Passage (STIRAP) protocol [2] used in quantum optics to
transfer population between two long-lived atomic or mo-
lecular energy levels. The CTAP scheme amounts to trans-
porting electrons coherently from one end of the chain to
the other by dynamically manipulating the tunnel barriers
between potential wells.

There have been several proposals to perform the CTAP
scheme in triple-well solid-state systems such as quantum
dots [3-6], ionized donors [7] or superconductors [8].
Similarly, this technique has been put forward as a means
to transport single atoms [9] and Bose-Einstein conden-
sates [10] within optical potentials. Recently, a classic
analogue of CTAP has also been demonstrated experimen-
tally, using photons in a triple-well optical waveguide [11].
The CTAP protocol therefore has both a quantum optics
and a condensed matter version, thus raising interest well
beyond the field of quantum information.

The implementation of the CTAP protocol naturally
brings about the question of its observation. The most
striking signature of CTAP is the vanishing occupation of
the middle potential well, which can be monitored using a
sensitive electrometer. In solid-state devices, this is usually
achieved using ballistic quantum point contacts (QPC).
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The electric current flowing through the QPC is influenced
by the presence of an electronic charge in its close environ-
ment, thus turning the QPC into a charge detector. One
may then wonder to what extent this charge detection is
invasive, a matter that is also directly relevant for possible
applications for quantum information purposes, as the
measurement backaction in the above setup can be related
to the influence of a decohering environment along the
chain.

Now it is largely believed that the CTAP scheme is
relatively robust against this type of measurements pre-
cisely because the middle potential well is barely popu-
lated. However, recent work [12] concentrating on the
decoherence aspects associated with nonlocal measure-
ments suggests otherwise. In this Letter, we study the
measurement backaction of the QPC on the CTAP scheme,
focusing on the effects of a continuous measurement pro-
cess. The measurement can take a significant amount of
time leading to a continuous evolution of the system and
thus posing a nontrivial time-dependent problem, compli-
cated by the dynamic tuning of the tunneling rates between
potential wells. Our approach closely follows an alterna-
tive derivation of the Bayesian formalism developed by
Korotkov [13]. The advantages over the conventional mas-
ter equation are threefold. First, it allows for the analysis of
a particular realization of the measurement process, rather
than capturing the behavior of the system averaged over
many measurements. Second, it enables us to keep track of
the detector output over the duration of the transfer, pro-
viding us with information about the time evolution of the
system, relevant to upcoming experiments. Third, it pro-
vides a microscopic model for the unavoidable decoher-
ence rate due to measurement backaction: In Ref. [1] the
fidelity of the CTAP process has been analyzed as a func-
tion of some given decoherence rate appearing as an addi-
tional parameter, while we will be able to make a direct
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connection between which path information and loss of
fidelity. This is particularly important from the quantum
information point of view, since it shows that any environ-
ment providing which path information—even for sites
with suppressed occupancies—reduces the fidelity.

We consider a triple-well solid-state system, whose
Hamiltonian is characterized by the time-dependent tun-
neling rate {),;(¢) between wells i and j, and the energy € of
the potential wells:

3

H3W = Z GC?‘C,‘ + (thz(t)CTCZ + th:;(t)CgC:; + H.C.),
i=1

D

where ler creates an electron in well i.

We now wish to apply the CTAP scheme to coherently
transfer an electron from well 1 to well 3. Following
Ref. [1], this is achieved by applying Gaussian voltage
pulses to tune the tunnel barriers in time according to

(t_ tmax/2 ~ ldela )2
Qp(1) = Qg exp[— 202 o :I’

— (t B tmax/z)z] 2)
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where we introduced the pulses height ({),,,,) and duration
(tmax)» and chose for the standard deviation o = 1,,,,/8.
The pulses are applied in a counterintuitive sequence ({153
is fired prior to {}},) with a delay 74,y = 20, in order to
maximize the fidelity of the transfer [1,14].

To monitor the charge configuration of this system, we
couple the middle potential well to a charge detector. Here
we use a simplified version of the QPC, namely, a tunnel
junction whose barrier height is sensitive to the presence of
an electron in the middle well. The hopping amplitude
through the barrier varies from €' to (), depending on
whether or not well 2 is occupied [15]. The detector
Hamiltonian can thus be written as

H,, = ZEra:ra, + ZEla;a,
r I

+ Zh(ﬂ + (‘)‘Qc;rcz)(a;ra, + a;rar), 3)
Lr

where af and a}L are the electron creation operators in the
right and left electrode, respectively, while E,; stands for
the set of energy levels in the reservoirs. Here we intro-
duced Q) = Q' — Q, and assumed all tunneling ampli-
tudes to be real and energy independent.

Our goal is to study the evolution of the triple-well
system under continuous measurement by the detector,
focusing on a single realization of the measurement pro-
cess. This is achieved by considering the triple-well system
and the detector as the two parts of an enlarged quantum
system. This allows for describing the quantum state of this
enlarged system via a generalized density matrix p;?j(t)
[15]. The latter corresponds to the density matrix in the
basis of localized states (associated with wells 1, 2, and 3)

further divided into components with different number n of
electrons passed through the detector. The evolution of this
generalized density matrix is given by a set of Bloch-type
equations obtained from the many-body Schrédinger equa-
tion for the entire system. Extending the derivation of
Ref. [15] to include time-dependent tunneling rates, one
obtains the following set of rate equations for the density
matrix

P10 = Dpi (1) — pi, ()] = 2Q5()Im[p,(1)],

p5,(1) = D'[p55 (1) — p5y(0)] + 2Q,()Im[ pf, (1)]
— 2Q,3()Im[ p5(1)],

pi:(t) = DLp33 (1) — piy ()] + 2Q0p3()Im[p5; ()],

p1al0) = DDTps o) = 22 P o
+ iQ (Ol (1) — ph(D] + iQ(0) (1),
D+D

p3(1) = NDD' 31 (1) — Tpﬁg(t)

+ iQo3(0)[p5, (1) — pi3(0)] — iQ15(1)p'l5(0),
pi(1) = Dp (1) — pla(D)] + iQas3(1) pl, (1)
— iQy,(1) p55(2), “4)

where we used the convention p?j(t) = 0, and introduced
the tunneling rates D = 2mhpgrp, Q%eV and D' =
2mhprp Q?eV. Here, we considered a QPC under a
voltage bias V, with constant density of states pg ; in the
electrodes. Note that by tracing over the detector degrees of
freedom, one recovers the conventional master equation
for the density matrix p;; = 3, pi;- In this case, the mea-
surement backaction reduces to a constant dephasing term
I = (/D — v/D')?/2, which only affects the coherences
P12 and po;.

The drawback in including the detector into the quantum
part of the setup is that one now needs a way to extract
classical information from it. Following Ref. [13], we
introduce a classical pointer which periodically collapses
the wave function of the quantum system. The pointer only
interacts with the detector at times 7, forcing it to choose a
definite value n; for the number n(f;) of electrons that
passed through the QPC. The value of n; is picked ran-
domly according to the probability distribution P(n) set by
the density matrix at the time of the collapse, namely
P(n) = pt,(t) + p5,(1) + pi(#;). Once a particular ny
has been selected, the density matrix should be immedi-
ately updated as pf(t;) = 8, p;} (t)/P(ny). After that,
the system evolves according to Eq. (4) until the next
collapse at r = f;, . While it is not clear how frequently
the collapse procedure should occur, we could check ex-
plicitly that our results are insensitive to the choice of 7,
provided that Az, = 1, — ti—| << Irax-

The combination of the coupled Bloch Eqgs. (4) with the
collapse procedure is solved by stochastic sampling: for a
given sequence of times f;, we numerically implement the
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succession of evolutions and collapses while keeping track
of the detector output n(z). This provides us with one
particular realization of the measurement process. In par-
ticular, this implies that by the end of the “‘simulated
experiment” at = 7, one obtains a definite answer
whether the electron sits in the middle well or not, so
that p”(7) can only take the values 0 or 1. Moreover,
reproducing this procedure over thousands of realizations
allows us to extract statistical properties, such as the dis-
tribution 2(n) of the total number of electrons that crossed
the tunnel junction over the duration 7 of the experiment.
Such features could be compared to experimental data
when it becomes available.

As a first test of the method, we consider the case of a
decoupled detector, obtained by setting equal tunneling
rates D = D' in Eq. (4). In this case, no information on
the position of the electron can be extracted from the
measurement and the CTAP scheme works with optimum
fidelity. We could verify not only that the distribution 2(n)
obtained after a few thousand runs turns out to be very
close to the expected Poisson behavior but also that the
profile of the diagonal density matrix p}(#;) is identical to
the one obtained from solving the conventional master
equation for p;;(#) with Hamiltonian Hs,, (1).

Let us now increase the coupling to the detector, by
reducing the value of the tunneling rate D’ compared to
D. Keeping track of the distribution 2P(n) of the number of
electrons in the detector as a function of the rate mismatch
D — D' leads to the results of Fig. 1(a). The main signature
of the measurement backaction on this distribution is the
emergence of a satellite peak on top of the Poisson-like
behavior. As one increases the value of D — D’, making
the measurement stronger, this secondary structure be-
comes more prominent, while the main peak flattens out.
The distance between these two features grows like
(D — D")r. Out of the thousands of realizations that result
in the distribution of Fig. 1(a), the ones that contribute to
the satellite peak correspond to situations for which the
electron sits in the middle well by the end of the experi-
ment, i.e. p;y)(r) = 1. As a result, the integral under this
secondary peak measures the proportion p, of runs where
the electron is detected in well 2. Obviously, these realiza-
tions exemplify an unsuccessful transfer, and one would
thus expect a reduced fidelity for the CTAP scheme.
Indeed, as the coupling to the detector becomes more
important, one obtains more information on the location
of the electron, and the fidelity of the CTAP protocol
decreases, as shown in Fig. 2(a). This reduction turns out
to be more important than one would anticipate because the
average probability p; of finding the electron in the first
potential well is not only finite but also increases along
with D — D’ in a way that p;, = p,; see Fig. 2(a). The
measurement therefore leads to an increased population of
the middle well, compared to the unmonitored CTAP
scheme. This effect is quantitatively similar to that of
pure dephasing [1].
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FIG. 1 (color). Distribution P(n) as a function of (a) D — D'
with Q,.,x = 50, D = 300 (in units of .,},), (b) Q.. for D =
300, D' = 100 (in units of 7,,),). In both cases, the duration of
the experiment is 7 = 1.57,,,.

We could further check that for a given value of D — D’
increasing the amplitude ()., of the pulses restores the
fidelity of the CTAP protocol, as illustrated in Fig. 2(b).
This, however, goes with a significant loss of weight of
the satellite peak in the probability distribution P(n) [see
Fig. 1(b)] corresponding to a loss of information on the
location of the electron. These results also confirm that the
position of the satellite peak is independent of ).

The compiled record of the detector output n(z) for 1000
runs is plotted in Fig. 3, and one readily sees that it can be
divided into two subsets. The lower subset is associated
with the ensemble of runs that contribute to the satellite
peak in P(n), and correspond to the detection of the
electron in the middle well, pgg) (7) = 1. The upper subset
is associated with the ensemble of runs contributing to the
main Poisson-like structure in P(n), and correspond to
pgg)('r) =0.

It is instructive to evaluate the average behavior of n(z)
within each of these subsets (see inset of Fig. 3). On
average, for the upper subset one has {(n(t)) ~ Dr, with a
very small downward shift compared to the straight line.
For the lower subset, there are three distinct regimes,
defined by the typical scales f,,, and 7., [defined as
Ql2(tcross) = QZB(tcross)]- For 0=t = Leross» the average
number (n(z)) of electrons through the detector is again
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FIG. 2 (color online). Diagonal part of the density matrix
n(r

P )(T) averaged over all runs, as a function of (a) D — D’
with Q. = 50, D =300 (in units of ,,}), (b) Q. for
D = 300, D' = 100 (in units of #,,.). In both cases, the duration
of the experiment is 7 = 1.5¢,,,,.

given by Dt and the average occupation of the middle well
stays much lower than 1. For times = f,,,,, (n(¢)) grows
like D't and the average occupation of the middle well
stays close to 1, over the whole time range: the electron has
been detected. The most interesting behavior occurs for
toross = = fpax: the detection builds up as the average
occupation of the middle well rises from nearly O to
nearly 1. In the meantime, the average detector output
(n(1)) grows like (D + D')t/2, while one might have ex-
pected a gradual decrease of the slope from D to D’. This
slope is a robust feature which does not seem to depend on
the ratio 74,y /0, or the Gaussian nature of the pulses (2).
For convenience, we chose to present results obtained for a
substantial value of D — D', as it enhances the features
observed. We could verify however, that much smaller
values of this parameter (e.g., D — D' = 0.1 D) lead to
very similar results, and, in particular, one can still isolate
three regimes in the detector output with the same
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FIG. 3 (color online). Compiled (main graph) and averaged
(inset) record for the upper and lower subsets, obtained for 1000
runs, with Q,,,, = 50, D = 300, D’ = 100 (in units of #,,.,) and
a duration of the experiment 7 = 21,,..

intriguing slope in the intermediate one. Finally, notice
that it is fundamentally impossible to derive measurement
records like the ones shown in Fig. 3 from a conventional
master equation description [1].

Our approach can easily be extended to other pulse
shapes and sequences as well as more complicated setups.
It also offers the possibility to reconstruct the density
matrix for a given experiment, by replacing the random
collapse with the experimental measurement record.

In summary, we have proposed an approach which
allows to study the measurement backaction on an electron
submitted to the CTAP protocol in a triple-well system.
Our work captures the loss of fidelity of the CTAP scheme
associated with the measurement process, a feature gener-
ally accounted for in the conventional master equation
formalism by explicitly adding a dephasing term. The
key observation of this Letter is that the reduction of the
fidelity is directly connected to the amount of information
one can extract concerning the location of the electron.
This has the important implication that a decohering envi-
ronment coupling to an electron on the CTAP chain re-
duces the fidelity of this scheme for quantum information
transfer in spite of the fact that the occupation probability
along the chain can be made arbitrarily small for the case
without decoherence.
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