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We resolve an existing question concerning the location of the mobility edge for operators with a

hopping term and a random potential on the Bethe lattice. The model has been among the earliest studied

for Anderson localization, and it continues to attract attention because of analogies which have been

suggested with localization issues for many particle systems. We find that extended states appear through

disorder enabled resonances well beyond the energy band of the operator’s hopping term. For weak

disorder this includes a Lifshitz tail regime of very low density of states.
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Introduction.—Operators which combine a hopping
term and random potential on tree graphs are among the
earlier studied models of Anderson localization [1–3].
Nevertheless, some questions about their phase diagram
have persisted and remained open at both the rigorous and
nonrigorous levels [4]. The subject has recently attracted
additional interest because of analogies which were drawn
between systems of many particles and that of one particle
on a graph of very high degree, where loop effects may be
unimportant [5,6].

Our purpose here is to describe a new result, whose
mathematical details will be spelled out elsewhere, con-
cerning the nature of the spectrum in an intermediate
regime, where the density of states is extremely low but
where nevertheless known criteria for localization do not
apply. The main result is the existence of extended states
and an absolutely continuous spectrum. Aside from an-
swering a long open question concerning the location of
the mobility edge, the proof may be of added interest, as it
introduces a new mechanism for the formation of extended
states which may reflect dynamics driven by disorder-
facilitated resonant tunneling.

More explicitly, we discuss the spectral properties of a
Hamiltonian operator of the form

H� ¼ T þ �V; (1)

acting in the space of square-summable functions over
a regular tree graph T of degree (K þ 1) (i.e., where each
sites has that many neighbors), with T being the generator
of ‘‘hopping’’ transitions between neighboring sites (i.e.,
Tx;y ¼ �jx�yj;1), V being a random potential, and � � 0

serving as a disorder parameter. It is assumed here that
fVxgx2T form independent identically distributed random
variables, with a probability distribution whose density
�ðVÞ is continuous and positive on the entire line, with a
finite number of humps, and E½jVxj��<1 for some � > 0.
(Examples include the Gaussian and the Cauchy distribu-
tions, as well as any linear combinations.)

For ergodic potentials, a class which includes the present
case, the spectrum of H� is (almost surely) a nonrandom
set, which in our case changes discontinuously: At � ¼ 0
it is just

�ðTÞ ¼ ½�2
ffiffiffiffi
K

p
; 2

ffiffiffiffi
K

p �; (2)

whereas for � > 0 the spectrum ofH� is the entire real line
(as is the case for V). The phenomena we discuss here are
related to the occurrence of energy regimes with different
spectral and dynamical types whose locations are also
nonrandom and which are separated by a so-called mobil-
ity edge. In one spectral regime the operator H� has only
localized eigenstates, and in the other its spectrum is ex-
pressed in extended (generalized) eigenstates, which en-
able conduction. These spectral types indicate the nature of
the evolution of wave packets with energies in the specified
regimes and of the conductance properties of an electron
gas in the corresponding one-particle approximation.
Simple examples of two different spectral types are

offered by the two components of H�. The operator V
has almost surely only a pure-point spectrum: It has a
countable collection of proper eigenstates (fjuigu2T)—
delta functions associated with the sites of T—and the
collection of its eigenvalues (fVugu2T) forms a dense set
over the full line. In contrast, T has a continuous, in fact
absolutely continuous, spectrum: It has only generalized
(non-square-summable) eigenfunctions, of continuously
varying energies (and infinite degeneracy).
Naively, one could expect that at least in the perturbative

regimes the spectrum of the sum (1) would resemble that
of the dominant term. That, however, is not quite the case.
As is well known, in one dimension disorder has a non-
perturbative effect: Even at weak disorder it causes com-
plete localization [7,8]. We now show that—somewhat
conversely—on tree graphs (other than 1D) extended
states, and an absolutely continuous spectrum, emerge
through resonances in regimes where at first sight one
could expect localization to dominate.
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The puzzle left by past results.—The phase diagram of
H� was considered in the early works of Abou-Chacra,
Anderson, and Thouless [2,3]. Arguments and numerical
work presented in Ref. [3] led the authors to surmise that a
mobility edge exists at a location which roughly corre-
sponds to the outer curve in Fig. 1, approaching limits close
to jEj ¼ K þ 1 as � # 0. As noted there, a puzzling aspect
of this finding is that this limit does not coincide with the
spectral edge of �ðTÞ [given by (2)]. The analysis offered
in Refs. [2,3] mainly focused on the breakdown of a
localization condition, without addressing the nature of
the spectral regime beyond this stability edge. Rigorous
results on localization established the following [9,10]: For
energies in a regime of the form jEj> �ð�Þ, with �ð�Þ a
function satisfying lim�#0�ð�Þ ¼ K þ 1, as qualitatively

depicted in Fig. 1, with probability one the random opera-
tor exhibits spectral and dynamical localization. Spectral
localization means here that in the specified range of
energies the operator has only a pure-point spectrum,
consisting of a dense set of nondegenerate proper eigen-
values whose eigenfunctions are exponentially localized.
Dynamical localization is expressed in the bound

X
jxj¼R

E½jhxjPIðH�Þe�itH� j0ij2� � AIe
���ðIÞR (3)

for intervals I lying within the interior of the localization
regime [the localization length ��ðIÞ�1 tends to zero as
the boundary of the localization regime is approached].
Here PIðH�Þ is the spectral projection onto the space
spanned by states with energies in I.

The curious gap between the edge of the proven local-
ization regime (which is jEj ¼ K þ 1) and the unperturbed

spectrum (jEj ¼ 2
ffiffiffiffi
K

p
) was considered in some detail

in the study of Miller and Derrida [4]. It was noted there

that for energies in the range jEj> 2
ffiffiffiffi
K

p
the mean density

of states �DOSðE; �Þ vanishes to all orders in �, for � # 0,
e.g., in the case of the Gaussian distribution as

�DOSðE; �Þ � exp½�CðEÞ=�2�. Such rapid decay is
characteristic of the so-called Lifshitz tail spectral regime,
and in finite dimensions it is known to lead to localization.
The conclusion of Ref. [4] was that the following question
remained unresolved by the available methods: What is the
nature of the spectrum for weak disorder at energies

2
ffiffiffiffi
K

p
< jEj<K þ 1 (4)

(where the density of states vanishes faster than any power
of �, as � # 0)? The rigorous results which were derived
since then have only sharpened the question. The existence
of an absolutely continuous spectrum, and diffusive dy-
namics [11], has by now also been established for the
random operators discussed here. However, until the
present work this has been accomplished only for energies

jEj< 2
ffiffiffiffi
K

p
and by arguments which address (in different

ways [11–13]) regimes of small �.
Thus, the past results have covered two regimes whose

boundaries, sketched in Fig. 1, do not connect. The result
presented here answers the question concerning the nature
of the spectrum in the region between the two curves in
Fig. 1. To describe the proof, and link the new to the
existing results, let us sketch some of the arguments which
play a role in the derivation of localization.
Sketch of the localization analysis.—Proofs of localiza-

tion on tree graphs [9,10] have been based on analysis of
the fractional moments of the Green function [14]

G�ð0; x; zÞ ¼ h0jðH� � zÞ�1jxi: (5)

Its relevance can be seen in the following bound (which is
valid for all graphs, not just trees) on the transition proba-
bility from 0 to x, for the time evolution generated by H�.
Restricting to energies in an interval I, one has

E½jhxjPIðH�Þe�itH� j0ij2�

� Cs

j�j1�s

Z
I
E½jG�ð0; x;Eþ i0Þjs�dE; (6)

which holds (under some assumptions on the probability
distribution of V) for any s 2 ½0; 1Þ at a constant Cs <1.
Thus, a sufficient condition for dynamical localization

in I, in the sense of (3), is that for all E 2 IX
jxj¼R

E½jG�ð0; x;Eþ i0Þjs� � e���ðEÞR (7)

at some s 2 ð0; 1Þ and ��ðEÞ> 0. Proofs of localization
have proceeded by establishing this condition.
To contrast the localization criterion with the new result,

it is convenient to recast (7) in terms of the function which
we define as [16]

’�ðs;EÞ ¼ lim
jxj!1

logE½jG�ð0; x;Eþ i0Þjs�
jxj ; (8)

for s 2 ½0; 1Þ, and for s ¼ 1: ’�ð1;EÞ ¼ lims"1’�ðs;EÞ.

FIG. 1. A sketch of the previously known parts of the phase
diagram. The outer region is of proven localization; the smaller
hatched region is of proven delocalization. The new result
extends the latter up to the outer curve defined by ’�ð1;EÞ ¼
� logK, assuming equality holds only along a line. The depic-
tion is schematic; however, the points at which the curve meets
the energy axis are stated exactly.

PRL 106, 136804 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 APRIL 2011

136804-2



Clearly, on tree graphs the localization condition (7)
holds wherever

’�ð1;EÞ<� logK: (9)

Our new result is that the opposite inequality implies an
absolutely continuous spectrum.

The new result.—The condition for an absolutely con-
tinuous spectrum throughout an energy interval I is

ImG�ð0; 0;Eþ i0Þ> 0 for almost all E 2 I: (10)

For the random operator discussed here, if (10) holds with
positive probability, then it holds with probability one. One
may note that ��1ImG�ð0; 0;Eþ i0Þ is the density of the
absolutely continuous component of the spectral measure
associated with the state j0i. The above condition carries
also direct consequences for the dynamics: (i) As explained
in Refs. [4,17], when particles of energy E are sent coher-
ently down a wire which is connected to the point x 2 T,
the reflection coefficient is less than 1 and some of the
current is transmitted through the graph if and only if
ImG�ðx; x;Eþ i0Þ> 0. (ii) By the Riemann-Lebesgue
lemma any state whose eigenfunction decomposition con-
sists solely of states in the absolutely continuous spectrum
of H� [a subspace on which the projection is denoted by
PacðH�Þ] would, under the dynamics generated by H�,
asymptotically leave any finite region; i.e.,

lim
t!1

X
jxj�R

jhxje�itH�PacðH�Þj’ij2 ¼ 0 for any R> 0:

Theorem (delocalization regime).—For the random
operators considered here, (10) is satisfied, and hence
the operators have almost surely an absolutely continuous
spectrum, throughout any interval where

’�ð1;EÞ>� logK: (11)

Furthermore, the corresponding region in the E� �
‘‘phase diagram’’ includes for each energy jEj<K þ 1
an interval with a positive range of � > 0.

By convexity, a sufficient condition for (11) is that the

Lyapunov exponent L�ðEÞ ¼ � @’�

@s ð0;EÞ satisfies
L�ðEÞ< logK: (12)

This yields a somewhat more tractable sufficiency
criterion for delocalization, which is quite effective at
weak disorder and at high K. The Lyapunov exponent
yields the Green function’s typical rate of decay:

jGð0; x;Eþ i0Þj � e�L�ðEÞjxj, and it can be expressed as
L�ðEÞ ¼ �E½logj��ð0;Eþ i0Þj�, in terms of the quantity
��ð0;Eþ i0Þ which is defined in (16) below. It is calcu-
lable for the Cauchy random potential, in which case (12)
holds at E ¼ 0 for (exactly) j�j<K � 1.

At first sight, the characterization of the mobility edge
by ’�ð1;EÞ ¼ � logK may be surprising, since this has
the appearance of a threshold for ‘1 summability whereas
the transition from a pure-point spectrum corresponds

to the loss of square summability, i.e., an ‘2 condition.
On the tree, or any graph of exponential growth, the latter
may continue to be satisfied well beyond the threshold for
‘1 summability. However, the criterion incorporates an
important fluctuation effect. Some light may be shed on
this phenomenon by the following heuristic argument [18].
A heuristic explanation.—Let us first indicate why the

operator has no pure-point spectrum in any interval
throughout which (11) holds. The hallmark of such a
spectrum in a given interval I, for an operator with
random potential, is the almost-sure square summability
of the Green function, at fixed E 2 I:

P
yjG�ðx; y;Eþ

i0Þj2 <1, from any given site x. This is due to the spectral
averaging principle, which implies that in the presence
of disorder, such typical properties of the Green function
are shared by the operator’s eigenfunctions (cf. [9,20]).
Now, for energies E in the localization regime

G�ð0; x;Eþ i0Þ � X
n

1

En � E
	nð0Þ �	nðxÞ; (13)

where � is used since we put aside the fact that the
spectrum may include more distant and hence nonsingular
terms where an integral expression is to be used. The
localized eigenfunctions decay exponentially, each from
its particular center xn, at an exponential rate which is
typically given by the Lyapunov exponent. For a given R
there will typically be about �E�DOSðE; �ÞKR eigenfunc-
tions localized in the vicinity of the shell jxj ¼ R, with
energies scattered within E��E. The typical value of
the smallest energy gap in such case would be

min
n:jxnj�R

fjEn � Ejg � ½�DOSðE; �ÞKR��1: (14)

For xmin—the site where the minimum is attained—the
contribution of just the corresponding eigenfunction to
the Green function would typically be of the order of

KRe�RL�ðEÞ. Making the seemingly reasonable assumption
that this relatively large term would not be exactly can-
celled by the other contributions in (13), one is led to
expect that under the Lyapunov exponent condition (12),
if E is in the pure-point spectral regime, then typically

max
x:jxj¼R

jG�ð0; x;Eþ i0Þj � e�R (15)

at some � > 0. As explained above, this contradicts the
assumption of a pure-point spectrum.
Taking into the account the contribution of eigenfunc-

tions with a slower decay, through large deviation analysis,
one arrives at the conclusion that (15) is to be expected
also under the less stringent condition (11), as stated in the
theorem.
The above argument is obviously incomplete, and at best

it indicates only the existence of a continuous spectrum,
though not necessarily an absolutely continuous spectrum.
The theorem states more: With probability one, ImG�

ð0; 0;Eþ i0Þ> 0. Following is a sketch of the proof.
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The analysis on trees simplifies due to two relations:
(i) Upon the removal of the root of a rooted regular tree,
the graph splits into a collection of K trees which are
similar to the original one and whose roots form the set
N þ

x of the forward neighbors of x. This leads to the
recursion relation (the ‘‘self-consistency’’ condition of [2])

��ðx; 
Þ ¼
�
�Vx � 
 � X

y2N þ
x

��ðy; 
Þ
��1

; (16)

with ��ðx; 
Þ :¼ hxjðHTx

� � 
Þ�1jxi the resolvent, at the

extended complex energy parameter 
 ¼ Eþ i�, of the
operator obtained by restricting H� to the subtree (Tx) of
sites which are beyond x relative to the root. (ii) The other
simplifying feature of trees is that the Green function
G�ð0; x; 
Þ factorizes into a product taken along the path
(0 	 u 	 x) from the root to x:

G�ð0; x; 
Þ ¼ h0jðH� � 
Þ�1jxi ¼ Y
0	u	x

��ðu; 
Þ: (17)

By the above relations, for any integer R � 0,

Im��ð0; 
Þ �
X

jxþj¼R

jG�ð0; x; 
Þj2Im�ðxþ; 
Þ; (18)

where x is the site just below xþ relative to the root.
Equality holds in the case Im
 ¼ 0, and the above relation
is physically interpreted as the current conservation when
feeding current through a wire at 0 (cf. [4]). To prove that
the imaginary part does not vanish in the limit Im
 # 0,
we show the instability of the set of real distributions for
��ð0; 
Þ under the iterative relation (18). A key role is
played by a large deviation analysis which is enabled by
the above multiplicative structure.

Discussion.–Our analysis indicates that the relevant phe-
nomenon for the transition from localization to a continu-
ous spectrum is the formation of extended states through
rare resonances between distant localization centers, which
can be found due to the exponential increase of surface at
radius R. This mechanism does not apply on graphs of
finite dimension. However, we expect it to be of relevance
also for other hyperbolic graphs, including with loops, and
possibly for many-particle systems. It will also be interest-
ing to better understand the implication of the picture
presented above on the dynamics. Analysis of the Green
function suggests evolution by tunneling through forbid-
den regions. The spread of an initially localized approxi-
mate eigenfunction may be rather nonuniform on scales
smaller than a ‘‘tunneling distance,’’ which in this regime
is large compared to the lattice spacing. On larger scales (in
both distance and time), the spread of the wave packet may
become more uniform and asymptotically ballistic. This
appears different than the more steady evolution which one
may expect in the perturbative regime of E 2 �ðTÞ and �
small [11]. The transition between the two regimes of
delocalization may be where the tunneling distance is
comparable to the lattice spacing, and it may occur as a

gradual crossover without a sharply defined spectral edge.
However, the rigorous analysis does not yet address these
questions. Finally, let us note that the phase diagram will
be different in the case of a uniformly bounded potential,
such as the Anderson model, for which recent numerical
results are presented in Ref. [21].
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[15] J. Fröhlich and T. Spencer, Commun. Math. Phys. 88, 151
(1983).

[16] For s < 1 the limits � # 0 and jxj ! 1 are interchange-
able, and hence ’�ðs;EÞ is decreasing in s. This is not the
case for s � 1, where the expected value in (8) diverges if
� # 0 is taken first, for E in the localization regime.

[17] M. Aizenman, R. Sims, and S. Warzel, in Quantum
Graphs and Their Applications, Contemp. Math.
Vol. 415 (American Mathematical Society, Providence,
2006).

[18] The formulation of the mobility edge in terms of an ‘1

condition appeared early on in Ref. [19]. However, that
announcement was not followed by a proof. So far, the
outlined method found its expression only in the analysis
of Ref. [11], which addresses small � and E 2 �ðTÞ.

[19] H. Kunz and B. Souillard, J. Phys. Lett. 44, 411 (1983).
[20] B. Simon and T. Wolff, Commun. Pure Appl. Math. 39, 75

(1986).
[21] G. Biroli, G. Semerjian, and M. Tarzia, Prog. Theor. Phys.

Suppl. 184, 187 (2010).

PRL 106, 136804 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 APRIL 2011

136804-4

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1088/0022-3719/6/10/009
http://dx.doi.org/10.1088/0022-3719/7/1/015
http://dx.doi.org/10.1088/0022-3719/7/1/015
http://dx.doi.org/10.1007/BF02186867
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1007/BF01135526
http://dx.doi.org/10.1007/BF01135526
http://dx.doi.org/10.1142/S0129055X94000419
http://dx.doi.org/10.1007/BF02099760
http://dx.doi.org/10.1007/BF02099760
http://dx.doi.org/10.1007/BF02099546
http://dx.doi.org/10.1006/aima.1997.1688
http://dx.doi.org/10.1006/aima.1997.1688
http://dx.doi.org/10.1007/s00440-005-0486-8
http://dx.doi.org/10.1007/s00440-005-0486-8
http://dx.doi.org/10.1007/s00220-006-0120-3
http://dx.doi.org/10.1007/s00220-006-0120-3
http://dx.doi.org/10.1007/BF01209475
http://dx.doi.org/10.1007/BF01209475
http://dx.doi.org/10.1051/jphyslet:019830044011041100
http://dx.doi.org/10.1002/cpa.3160390105
http://dx.doi.org/10.1002/cpa.3160390105
http://dx.doi.org/10.1143/PTPS.184.187
http://dx.doi.org/10.1143/PTPS.184.187

