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Macroscopically, confined electron gases at polar oxide interfaces are rationalized within the simple

‘‘polar catastrophe’’ model. At the microscopic level, however, many other effects such as electric fields,

structural distortions and quantum-mechanical interactions enter into play. Here, we show how to bridge

the gap between these two length scales, by combining the accuracy of first-principles methods with the

conceptual simplicity of model Hamiltonian approaches. To demonstrate our strategy, we address the

equilibrium distribution of the compensating free carriers at polar LaAlO3=SrTiO3 interfaces.

Remarkably, a model including only calculated bulk properties of SrTiO3 and no adjustable parameters

accurately reproduces our full first-principles results. Our strategy provides a unified description of charge

compensation mechanisms in SrTiO3-based systems.

DOI: 10.1103/PhysRevLett.106.136803 PACS numbers: 73.20.�r, 71.15.�m, 71.70.�d

The unusual behavior of the (001) LaAlO3=SrTiO3 in-
terface is commonly understood in terms of the ‘‘polar
catastrophe’’ (PC) model. [1] By stacking charged
ðLaOÞþ and ðAlO2Þ� layers on top of the charge-neutral
TiO2 and SrO layers, one obtains a net interface charge
density of �PC ¼ þe=2S, where S is the unit-cell cross
section. This produces a diverging electrostatic energy,
unless �PC is neutralized by an external free charge, which
explains the appearence of confined mobile carriers at this
interface. This model, while appealing, misses many im-
portant effects, that are crucial for a realistic description of
the interface. For example, it was shown that strong polar
distortions in LaAlO3 [2] and/or in SrTiO3 [3,4] partially
screen the excess charge, delaying the onset of metallicity
far beyond what the PC arguments would predict. Next, it
was shown that H adsorbates [5] or oxygen vacancies [6] at
the open LAO surface can profoundly alter the sheet den-
sity of free carriers. Moreover, reversible metal-insulator
transitions upon application of an external bias were also
demonstrated [7,8]. All these effects go clearly beyond the
oversimplified PC description. Finally, the PC model can-
not predict trulymicroscopic properties of the system, such
as the spatial decay and confinement of the free electrons
near the interface. In an attempt to address these latter
issues, a number of quantum-mechanical explanations
were proposed [9,10], but their relative importance, espe-
cially in relationship to the macroscopic electrostatics
arguments, is unclear. In this Letter we show how to
rationalize these many ingredients into a unified model,
where the respective role of the electrostatic and quantum-
mechanical effects are unambiguously identified.

We start our derivation by briefly reviewing the theory of
‘‘polar discontinuities’’ that was developed in Ref. [3]. The
strategy is based on the formal [11] definition of the
polarization, P, in quantum-mechanical systems, which
has a simple classical interpretation in terms of a point-
charge model (see Fig. 1). The dipole moment of an

individual ðLaOÞ � ðAlO2Þ unit is d ¼ �ea=2 [black ar-
rows in Fig. 1(b)], where a is the out-of-plane lattice
parameter and e is the (positive) electronic charge. This
corresponds to a ‘‘built-in’’ polarization P0

LAO ¼ �e=2S,
where S is the cell surface. Conversely, P0

STO ¼ 0 because

the STO layers are formally charge-neutral. Note that there
is no leftover ionic charge at the interface—we have re-
interpreted �PC, as a surface density of bound charge, that
arises because of a discontinuity in P.
Depending on the electrical boundary conditions, mac-

roscopic electric fields, respectively ELAO and ESTO, will be
present on one or either side of the junction. The electric
fields will in turn perturb the individual LAO and STO
layers, producing an ‘‘induced’’ polarization that we call
�PLAO and �PSTO. If we now define the total polarization
as P ¼ P0 þ�P, and the electric displacement as D ¼
�0E þ P, an exact relationship follows,

DLAO �DSTO ¼ �free; (1)

where�free is a surface density of ‘‘free’’ charge confined to
the interface region. Equation (1) generalizes the theory of
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FIG. 1 (color online). (a) Scheme of the TiO2: LaO interface,
showing the built-in (P0, black arrows) and induced (�P, blue
arrows) polarization, and the free charge �free. (b) Electric
displacement as a function of z, illustrating Eq. (1).
(c) Calculated internal electric fields E in bulk STO and LAO
as a function of D. The polar nature of the interface stems from
the impossibility of finding a common value ofD for which ELAO

and ESTO are both zero.
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Ref. [3] to the case of a nonzero�free. This formulation goes
beyond the PCmodel, as it takes rigorously into account the
effect of polar distortions (�P is implicitly contained inD),
external biases [EðDÞ is a bulk property of either material,
and is a unique function of D, see Fig. 1(c)] and charged
species adsorbed on the far-away surfaces (the flux of D
corresponds to the surface charge density). By appropri-
ately choosing the two independent parameters DLAO and
DSTO one can therefore describe the local properties of an
ideal interface within arbitrary boundary conditions, en-
compassing virtually all theoretical approaches (stoichio-
metric or nonstochiometric superlattices and various flavors
of slab geometries, see Ref. [12], Sec. 4) that were used so
far in the literature [13,14]. One does not need to worry
about the specific mechanisms and/or supercell geometries
that determine a certain equilibrium value of DLAO and
DSTO, as long as the interface can be thought as isolated
(say, separated by at least two or three unit cells of LAO and
STO on either side).

To work our way towards the microscopics, it is now
tempting to take the analogy to macroscopic Maxwell
equations one step further, and write

dDðzÞ
dz

¼ �freeðzÞ: (2)

Here, �freeðzÞ is the spatially resolved planar average of
free carriers, whose integral along z yields �free. It is easy
to verify that Eq. (2) is consistent with Eq. (1). Here one
runs into trouble, however, as one needs to establish a truly
microscopic definition of bothDðzÞ and �free. [This was not
necessary at the level of Eq. (1), which deals only with
macroscopic quantities.] This is a nontrivial issue in a
typical metal, where the polarization (and hence D) is ill
defined. Furthermore, �free is microscopically difficult to
identify, as the bands corresponding to the conduction
electrons are generally entangled with lower-lying bound
states. In a doped oxide or semiconductor, however, the
valence and conduction bands usually preserve their iden-
tity; i.e., a well-defined energy gap persists between
conduction-band and valence-band states. This naturally
leads to a definition of �free based on the overall density of
the partially occupied states near the Fermi level. The
remainder is an integer number of electrons that we iden-
tify as bound charges. We use these latter orbitals to define
a layer-resolved electric displacement, based on a Wannier
decomposition of the polarization, [3,15] in analogy with
standard insulators (see Ref. [12], Sec. 3).

We are now ready to verify Eq. (2) directly on our first-
principles calculations. To provide a representative number
of test cases, we study three combinations of DSTO and
DLAO, which are summarized in the insets of Fig. 2.
Case (a) corresponds to full compensation, e.g., that of a
thick LAO overlayer on a thick STO substrate.
Case (b) corresponds to partial compensation, which can
occur at intermediate LAO thicknesses [16], or in the case
of an electrical bias applied between the electron gas
and an electrode deposited on the free surface.

Case (c) physically corresponds to a ‘‘back-gating’’ re-
gime, where an electrical bias is applied between the
electron gas and an electrode placed at the other end of
the STO substrate. In practice, we use slab geometries of
the type vacuum=ðSrTiO3Þn=ðLaAlO3Þm=vacuum (we use
n ¼ 16 and m ¼ 3 in our calculations), where the bound-
ary conditions on D are enforced as explained in the SI,
Sec. 2. (All the other relevant computational parameters are
also described there; in SI, Sec. 6 we discuss the role ofm.)
In Fig. 2 we show the relaxed �freeðzÞ (a)–(c) and the layer-
by-layer (locally averaged) electric displacementDl (d) for
each combination. In Fig. 2(d) we also plot three curves
that we constructed by numerically integrating the
nanosmoothed charge densities, ��freeðzÞ. [We are therefore
verifying the integral version of Eq. (2), DðzÞ ¼R
z
�1 ��freeðtÞdtþDð�1Þ.] The matching is excellent in

all cases, demonstrating the high accuracy of Eq. (2).
Note that in one of the examples (case c) �free decays to
zero relatively fast when moving away from the interface,
while it spreads over the whole volume of the SrTiO3 film
in the other two cases. This is due to the fact that in (c) the
asymptotic electric field in STO is not zero, but equal to
EðD ¼ �0:2Þ � �12 MV=m [see Fig. 1(c)]. This pro-
duces a confining wedge potential, that limits the spread
of �free. Conversely, in (a) and (b), E vanishes at z ! �1,
and the outermost electrons are only loosely bound.
Equation (2) is an important result, in that it establishes a

direct, virtually exact relationship between the density of
compensating carriers and the local polarization [note that
PðzÞ �DðzÞ] in LAO and STO. This answers pressing
experimental questions concerning precisely this point, as
polar distortions in SrTiO3 were recently observed [17].
This also has profound implications over the theoretical
understanding of electron confinement in this system, as
we shall demonstrate in the following.
Essentially, the equilibrium distribution of the conduc-

tion charge is determined by two competing effects. One is
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FIG. 2 (color online). Conduction charge (a)–(c) and local
electric displacement (d) at the SrTiO3=LaAlO3 interface. In
(a)–(c) the solid curves are �freeðzÞ and the dashed curves are the
nanosmoothed ��freeðzÞ. Insets show an approximate diagram of
the effective local potential and ��free (shaded areas). In (d) the
symbols show the Wannier-based local electric displacement
computed from the bound charges. The curves representR
z
1 ��freeðtÞdtþDSTO.
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the electrostatic energy, that tends to localize the electrons
as close to the interface as possible. The strength of the
attraction depends on the static dielectric constant of
the underlying insulator (see Ref. [12], Sec. 5). The other
is the quantum-mechanical kinetic energy of the electrons.
This tends to spread the electrons in space, with a strength
that depends on the band dispersion. To see whether, and to
what extent, the large polar distortions in STO affect these
competing driving forces, we performed calculations (see
Ref. [12], Sec. 2.2) of bulk SrTiO3 as a function of the
electric displacement [18], by covering the range of DSTO

values that are relevant for the LAO/STO system. For each
value of D we extract the built-in electric field, the total
internal energy and the relevant parameters of the lower part
of the conduction band. These are the tight-binding hopping
integrals between Ti-derived orbitals with t2g symmetry

(dxy, dxz and dyz). As the t2g orbitals are fairlywell localized

in space, it is sufficient for the present study to consider only
the first three shells of nearest-neighbor Ti sites.

In Fig. 3(a) we show the electric field as a function of
the displacement field D. Note the strong nonlinearity in
the dielectric constant as a function of D [Fig. 3(b)]. In
Fig. 3(c) we show the band structure as it results from the
third-neighbor Hamiltonian, for the centrosymmetric cubic
state at D ¼ 0. Note the symmetry of the bands, which are
characterized by a threefold degeneracy at �. A polariza-
tion [the extreme case D ¼ �e=2S is shown in Fig. 3(d)]
lifts this degeneracy, by producing a strong splitting at �
between the degenerate dxz=dyz orbitals and the dxy orbital.

This splitting is dominated by the reduction in the dxz=dyz
bandwidth along the � ! X and � ! Z directions by 30%
and 25%, respectively.

We shall now use these data to develop a quantitative
model of the equilibrium distribution �freeðzÞ. We make a
rather bold assumption here, and state that the role played
by the LaAlO3 overlayer in determining �freeðzÞ is mar-
ginal, except for two crucial effects: (i) it confines the

conduction electrons to the STO side, and (ii) it defines
the electrical boundary conditions through the value of
DLAO. Based on this ansatz, we represent the LAO/STO
interface systems discussed in the previous paragraphs as
pure STO slabs, periodic in plane and n-layer thick, where
the boundary values of the electric displacement field at the
two surfaces are set toDSTO andDLAO. To each Ti site lwe
assign three orbitals of t2g symmetry, and a charge density

�l. The charge density defines the local value of the electric
displacement Dl through Eq. (2). The Hamiltonian matrix
elements are defined by the electrostatic potential Vl [cal-
culated from Dl using the bulk VSTOðDÞ of Fig. 3(a)],
which rigidly shifts the on-site terms, and by the
Dl-dependent hopping parameters that we interpolate
from the bulk SrTiO3 data. Upon diagonalization we obtain
the wavefunctions, that self-consistently determine �l

within the constraint Eq. (1).
In Fig. 4 we compare the results of the model to the first-

principles simulations discussed earlier. We include in the
comparison a fourth simulation that we did for case
DSTO ¼ 0, DLAO ¼ �e=2S, but with a thicker STO layer
(n ¼ 24). The agreement is remarkably good. This indi-
cates that the D-dependent bulk properties of SrTiO3,
together with the boundary values of D, are sufficient to
explain the distribution of conduction charge in this sys-
tem. This suggests that the interaction between Ti- and
La-derived orbitals is not an essential factor in determining
electron confinement, contrary to the conclusions of
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Parameters are the same as in Figs. 2(a)–2(c). (d) shows a thicker
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the model (see text). Insets: tight-binding band structures corre-
sponding to the green (d1) and black (d2) curves in (d). The
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Ref. [9]. Binding of the electrons to the interface is indeed
guaranteed by Eq. (2) (see Ref. [12], Sec. 5).

Now that we have a reliable model we can directly
quantify the impact of each specific STO bulk property on
the distribution of �free. First, if we neglect the nonlinearity
in the dielectric permittivity �STOðDÞ, and instead use a
constant �STOðDÞ ¼ �STOð0Þ � 500 we obtain a much
broader distribution [blue curve in Fig. 4(d)]. This indicates
that the carrier distribution is strongly sensitive to the
dielectric properties of bulk STO; this seems to be an
accepted fact in the experimental community, [19] but has
received surprisingly little attention in earlier ab initio
studies. Second, if we suppress the D dependence of the
STO band structure, and use the D ¼ 0 t2g Hamiltonian

throughout the film, we obtain [green curve in Fig. 4(d)] an
excessive accummulation of charge in the near-interface
region. This effect can be understood by comparing the self-
consistent band structures of the original [Fig. 4 (d2)] and
the ‘‘t2gðD ¼ 0Þ’’ [Fig. 4 (d1)] tight-binding models. In

both cases there is a strong splitting at � between the dxy
and dxz=dyz bands, in agreement with the findings of

Refs. [14,16,20]. In Fig. 4 (d1), however, this splitting is
only induced by confinement effects due to the wedgelike
electrostatic potential near the interface [21]. The
polarization-induced perturbations in the STO t2g bands

[Fig. 3(d)] enhance such a splitting [Fig. 4 (d2)] and shift
the dxz=dyz bands further up in energy. (The effect is stron-

gest on the lowest dxz=dyz band, marked with a red arrow in

the figure.) This upshift, in turn, pushes the weight of the
dxz=dyz electrons away from the LAO interface, which

explains the difference between the respective electron
distributions [green and black curves in Fig. 4(d)]. Note
that an analogous t2g splitting was experimentally observed

in LAO/STO, [22] and theoretically also discussed in the
context of the closely related LaTiO3=SrTiO3 system [23].

The tight-binding method used here has clear points of
contact with the strategy of Refs. [23,24]. However, in our
approach there is a crucial innovation. Here, at difference
with Ref. [23], we extract all the ingredients of the model
from bulk calculation of pure insulating SrTiO3, without
including any adjustable parameter. This forces us to build
a universal and transferable model, which can be readily
applied to essentially any situation involving electrostatic
doping of SrTiO3, and is not restricted to the specifics of
the LaAlO3=SrTiO3 interface. For example, our strategy
could be readily used, with little modifications, to interpret
the recent findings of electron gases at the bare SrTiO3

surface [21]. More importantly, our model could be readily
extended to account for other physical ingredients not
considered here, e.g., strong correlations [13] and strain
effects; [25] one just needs to refine the theoretical de-
scription of bulk STO that is provided as an input. This is
an enormous advantage, both conceptually (the model is
based on few parameters that are easy to interpret)
and practically (the tight-binding model is several orders
of magnitude more efficient than a full first-principles

calculation). More generally, our results open exciting
new avenues for the study of confined electron gases in
oxide systems, with optimal accuracy and dramatically
reduced computational cost.
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for their careful reading of the manuscript. This work was
supported by MICINN-Spain (Grants No. MAT2010-
18113 and No. CSD2007-00041, and the Ramón y Cajal
program) and the EC-FP7 project OxIDes (Grant No. CP-
FP 228989-2). Computing time was kindly provided by
BSC-RES and CESGA.

*mstengel@icmab.es
[1] A. Ohtomo and H.Y. Hwang, Nature (London) 427, 423

(2004).
[2] R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102,

107602 (2009).
[3] M. Stengel and D. Vanderbilt, Phys. Rev. B 80, 241103

(2009).
[4] N. C. Bristowe, E. Artacho, and P. B. Littlewood, Phys.

Rev. B 80, 045425 (2009).
[5] W.-J. Son, E. Cho, J. Lee, and S. Han, J. Phys. Condens.

Matter 22, 315501 (2010).
[6] C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323,

1026 (2009).
[7] C. Cen et al., Nature Mater. 7, 298 (2008).
[8] S. Thiel, G. Hammerl, A. Schmehl, C.W. Scheneider, and

J. Mannhart, Science 313, 1942 (2006).
[9] H. Chen, A. Kolpak, and S. Ismail-Beigi, Phys. Rev. B 82,

085430 (2010).
[10] K. Janicka, J. P. Velev, and E.Y. Tsymbal, Phys. Rev. Lett.

102, 106803 (2009).
[11] R. Resta and D. Vanderbilt, in Physics of Ferroelectrics: A

Modern Perspective, edited by K.M. Rabe, C. H. Ahn, and
J.-M.Triscone (Springer-Verlag, Berlin, Heidelberg, 2007).

[12] See supplemental material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.106.136803.

[13] R. Pentcheva and W.E. Pickett, J. Phys. Condens. Matter
22, 043001 (2010).

[14] H. Chen, A.M. Kolpak, and S. Ismail-Beigi, Adv. Mater.
22, 2881 (2010).

[15] X. Wu, O. Diéguez, K.M. Rabe, and D. Vanderbilt, Phys.
Rev. Lett. 97, 107602 (2006).

[16] W.-J. Son, E. Cho, B. Lee, J. Lee, and S. Han, Phys. Rev. B
79, 245411 (2009).

[17] N. Ogawa et al., Phys. Rev. B 80, 081106 (2009).
[18] M. Stengel, N.A. Spaldin, and D. Vanderbilt, Nature Phys.

5, 304 (2009).
[19] O. Copie et al., Phys. Rev. Lett. 102, 216804 (2009).
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