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We study collective behavior of magnetic adatoms randomly distributed on the surface of a topological

insulator. Interactions of an ensemble of adatoms are frustrated, as the RKKY-type interactions of two

adatom spins depend on the directions of spins relative to the vector connecting them. We show that at low

temperatures the frustrated RKKY interactions give rise to two phases: an ordered ferromagnetic phase

with spins pointing perpendicular to the surface, and a disordered spin-glass-like phase. The two phases

are separated by a quantum phase transition driven by the magnetic exchange anisotropy. The ordered

phase breaks time-reversal symmetry spontaneously, driving the surface states into a gapped state, which

exhibits an anomalous quantum Hall effect and provides a realization of the parity anomaly. We find that

the magnetic ordering is suppressed by potential scattering.
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Topological insulators in three dimensions are a class of
time-reversal-invariant materials characterized by gapless
surface states with Dirac-like dispersion (for a review, see
Refs. [1,2] and references therein). These topologically
protected states originate from the bulk band inversion
induced by strong spin-orbit interactions. The effective
low-energy Hamiltonian has the form of the Rashba spin-
orbit coupling

H0 ¼ v ~n � ~p� ~�; (1)

where ~� is the electron spin, v is the Fermi velocity, and ~n
is the normal vector to the surface, chosen to be along the
z direction. The surface states lead to interesting phe-
nomena, including magnetoelectric effect [1–4], large
Kerr, and universal Faraday effects [4,5]. In addition, the
locking of spin and momentum on the surface [6], evident
from Eq. (1), gives rise to electric charging of magnetic
textures [7], and opens up new opportunities for spintronics
applications [8–10].

The aforementioned physical effects and device appli-
cations rely on the ability to induce perturbations that
break time-reversal symmetry and open up a gap in the
surface states spectrum. A relevant perturbation has the
form of a mass term for Dirac electrons,

H1 ¼ m�z: (2)

In principle, such a perturbation can be induced by depos-
iting magnetic films. However, such a method has a sig-
nificant disadvantage of being irreversible, and likely
inducing too strong magnetic fields that can completely
destroy surface states. Thus, alternative methods are
needed which would allow for a controllable and reversible
manipulation of the topological surfaces states.

Here we explore the possibility of gap opening by
controlled adsorption of magnetic adatoms. We study the

collective behavior of adatom spins, determined by the
RKKY-type interactions mediated by the surface states.
We argue that depending on the exchange anisotropy of a
single impurity spin, the ground state of many spins is
either a spin glass (SG), or a ferromagnetically ordered
state with spins pointing perpendicular to the surface. The
two phases are separated by a quantum phase transition.
The phase diagram is summarized in Fig. 1.
In the ferromagnetic phase the average exchange field

of impurities induces a mass of Dirac electrons, Eq. (2),

FIG. 1 (color online). Phase diagram of magnetic adatoms.
Inset: Magnetization of spins on the topological surface, which
are interacting via RKKY interactions, as a function of the
exchange anisotropy � ¼ Jk=Jz. We find the position of the

quantum critical point, �c � 1:3, from the condition that
the magnetization is decreased by 50%. This is supported by
the fluctuations of the magnetization, which exhibit a maximum
at the conjectured transition point, �c � 1:3. Cluster of 9 spins
was considered, and averaging was performed over 150 disorder
realizations.
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opening up a band gap in the spectrum of the surface states.
The mass depends on the concentration of adatoms and
their type, and therefore is tunable. We find that this state is
favored in a large region of the phase diagram (see below),
and persists up to several tens of Kelvin. In contrast, in the
SG phase the average value of spin is zero, and on average
the time-reversal symmetry is not broken; thus the gap is
absent. There is, however, an insignificant disorder broad-
ening which induces finite density of states at the Dirac
point [11]. Our work shows that deposition of magnetic
impurities provides a route to controllably change the
spectral and transport properties of surface electrons.

We start with the analysis of the RKKY interactions,
employing the T-matrix description. The interaction en-

ergy of two impurity spins located at ~R1;2, respectively, is

given by [12]

�12¼�T
X

"

Trln½1� t̂2ð"ÞG0ð"; ~RÞt̂1ð"ÞG0ð";� ~RÞ�: (3)

In this expression ~R ¼ ~R2 � ~R1, " are fermionic
Matsubara frequencies, t̂1;2ð"Þ are the low-energy

T matrices of the impurities, and G0ð"; 0Þ is the unper-
turbedMatsubara Green’s function of the surface electrons.
The trace here is taken over the spin space. Note that there
are also single-spin terms in the thermodynamic potential,
which correspond to an easy or hard axis anisotropy for
spins larger than 1=2. However, such anisotropy can be
shown to be determined by high energies of the order of
bandwidth; thus, it cannot be reliably calculated in the
present approach, designed to capture low-energy physics.

We consider a model in which the spin of an individual
impurity situated at ~r ¼ ~r0 interacts with the surface elec-
trons via anisotropic exchange Hamiltonian [13],

Hex ¼ JzSz�z�ð ~r� ~r0Þ þ JkðSx�x þ Sy�yÞ�ð ~r� ~r0Þ;
(4)

where z is the direction perpendicular to the surface and Si
is the impurity spin operator. The exchange anisotropy,
Jz � Jk, stems from the combination of spin-orbit inter-

actions and breaking of rotational symmetry on the surface.
Electrons are described by the Hamiltonian (1), with band-
width W (for Bi2Se3 W � 0:3 eV [1]), and a short range
cutoff a ¼ v=W.

The T matrix t̂ð"Þ is found using the Lippmann-
Schwinger equation:

t̂ð"Þ ¼ ~Vi ~�þ ~Vi ~�G0ð"; 0Þt̂ð"Þ; (5)

~V i ¼ ðJkSxi ; JkSyi ; JzSzi Þ: (6)

The expression for the unperturbed Matsubara Green’s
function of the surface electrons, G0ð"; ~rÞ, for the
Hamiltonian (1) reads

G0ð"; ~rÞ ¼ � i"

2�v2
K0

�j"jr
v

�
� ij"j

2�v2
K1

�j"jr
v

�
ðr̂� ~�Þz;

where K0;1ðxÞ are modified Bessel functions, and r̂ is the

unit vector in the direction of ~r. For ~r ! 0 the above
equation takes the following form:

G0ð"; ~r ! 0Þ � gð"Þ�0; gð"Þ ¼ � i"

2�v2
ln
W

j"j : (7)

Using the above relations, we get the form of the T matrix,

t̂ ¼ t0�0 þ ~t ~�; ðt0; ~tÞ ¼ 1

1� g2 ~V2
ðg ~V2; ~VÞ: (8)

The above form of the T matrix exhibits poles at ener-

gies found from the equation 1� g2 ~V2 ¼ 0. In the limit of

a very large bare potential, j ~Vj � Wa2, the resonances are

positioned at low energies, j"j � 2�v2=j ~Vj lnWj ~Vj
2�v2 [14],

similar to the case of graphene (see, e.g., Ref. [12]). It is
easy to see that the impurity spin dependent part of the

T matrix vanishes in both limits of j ~Vj ! 0 and j ~Vj ! 1.
Thus the RKKY interaction reaches a maximum at

r� j ~Vj=Wa � a for strong exchange, maxðJk; JzÞ �
2�v2=W. This effect is missing in the perturbative treat-
ment of RKKY.
Lowest order perturbation theory [15] can be used for

moderate exchange values, maxðJk; JzÞ & 2�v2=W. For

simplicity, we focus on this case below; RKKYinteractions
for the case of strong exchange will be discussed elsewhere
[11]. At moderate exchange, the RKKY interactions at not
too small adatom separation r � a can be obtained from
the general expression (3) by expanding the logarithm to
the lowest order. This gives, up to a small corrections of the
order a=r,

U12ð~rÞ ¼�J2z
C

r3
Sz1S

z
2 � J2k

C

r3
ð ~S1 � r̂Þð ~S2 � r̂Þþ J2k

D

r3
S?1 S

?
2 ;

(9)

where S?1ð2Þ ¼ ~S1ð2Þ � ðr̂� ~nÞ, C ¼ 1
16�3v

R
d��2ðK2

0ð�Þþ
K2

1ð�ÞÞ ¼ 1
64�v , D ¼ 1

16�3v

R
d��2ðK2

1ð�Þ � K2
0ð�ÞÞ ¼

1
128�v ¼ C=2. Therefore, the interactions between two im-

purities have a strongly anisotropic form which stems from
the spin-momentum entanglement on the surface. Similar
anisotropy occurs in other materials with strong spin-orbit
interactions [16].
We analyze the collective behavior of adatoms under the

realistic assumption that their spatial distribution is com-
pletely random, and the exchange coupling to the surface
electrons is not too strong. The positional randomness
combined with the form (9) of the RKKY interactions
makes the in-plane interactions frustrated: the exchange
is antiferromagnetic between components of spins perpen-
dicular to ~r, and ferromagnetic for the components of the
spins parallel to ~r. Instead, the ferromagnetic interactions
between z components of spins can be optimized simulta-
neously. We conclude that for � � Jk=Jz 	 1 the ground

state of any system of adatoms is a ferromagnet with
magnetization along the z axis. In the opposite limit,
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� � 1, the frustrated xy interactions dominate, giving rise
to the ground state in which spins are frozen in the
xy plane, with zero average polarization in the z direction.
We expect this phase to be a SG (see below), which is
separated from an Ising-type ferromagnet by a quantum
critical point. We also expect the ferromagnetic ground
state to survive some degree of exchange anisotropy, such
that the critical point corresponds to �c > 1. As the ferro-
magnetic ordering breaks discrete Z2 symmetry, it occurs
via a finite-temperature second order phase transition of
the Ising type. The SG phase should not exist at finite
temperature due to the reduced dimensionality.

The value of �c depends on the magnitude of the impu-
rity spin. We choose the most unfavorable for ferromag-
netic ordering case of S ¼ 1=2, having the largest quantum
fluctuations that disordered phases. To estimate the value
of �c, we have performed numerical simulations on small
spin systems. We exactly diagonalized Hamiltonians of
randomly distributed spin-1=2 clusters with pairwise inter-
actions given by Eq. (9). The resulting magnetization,
averaged over 150 disorder realizations, is illustrated in
the inset in Fig. 1. At � � 1:3 magnetization decreases by
50%; we take this point to be the finite-size approximation
to the point of quantum phase transition [17]. For S > 1=2,
we expect �c > 1:3 [11].

What is the nature of the disordered phase realized at
zero T and � * �c? We expect that at � ! 1 (the only
interactions are in plane) the frustrated random interaction
should lead to a SG phase [18], similarly to the case of 2D
bimodal XY model [17], and 3D dipolar dilute magnets
and magnetic semiconductors [16,19]. We conjecture that
weak ferromagnetic interaction of z spin components does
not destabilize the SG phase, and it extends all the way to
� ¼ �c. This hypothesis is supported by the qualitative
similarity of our system to the Sherrington-Kirkpatrick
model [20], which describes the competition between the
nonfrustrated ferromagnetic exchange and the frustrated
sign-changing interactions. In the model [20] the ferro-
magnetic phase is destroyed once the frustrated part of the
interactions becomes strong enough. Our model almost
certainly exhibits a similar behavior. Experimentally,
the zero-temperature SG phase manifests itself in the
divergence of the nonlinear magnetic susceptibility as
T ! 0 [18].

Now we estimate the ferromagnetic ordering tempera-
ture. At � 
 1, the ordering transition is that of Ising spins
randomly distributed in the plane and interacting via 1=r3

interactions. The ordering temperature can be estimated as
the typical exchange interaction between two neighboring
spins. The result for the transition temperature can be read
off Eq. (9) by setting Sx;y1;2 ¼ 0 and r ¼ ffiffiffiffiffiffi

nm
p

, where nm is

the concentration of impurities. This gives an estimate

TcðnmÞ ¼ �
J2z
v
n3=2m ; (10)

where � is a numerical coefficient. A Monte Carlo simu-
lation of this model yields � � 0:016 [21]. We expect this

estimate to hold for � & 1. For nma
2 � 1, Jz �Wa2, and

W ¼ 0:3 eV (band gap of Bi2Se3), we obtain Tc � 30 K,
which is in the experimentally observable range.
We now discuss the spectral and transport properties of

the Dirac fermions in the presence of adatoms. The ferro-
magnetic phase is characterized by the spontaneous break-
ing of the time-reversal symmetry, leading to a band gap.
The most dramatic signature of the ferromagnetic ordering,
detectable in transport, is that the behavior near the neutral-
ity point changes from metallic to strongly insulating.
In contrast, both paramagnetic and SG phases correspond
to a gapless state of the Dirac fermions; the randomness of
the potential created by adatoms leads to the smearing of
the average DOS near the Dirac point [11], similar to the
case of graphene [22]. The transport in this case remains
metallic.
At the mean-field level, the mass induced by ordering of

adatoms is given by

m ¼ nmJzS: (11)

We have calculated density of states (DOS) in the self-
consistent T-matrix approximation [23], finding that for
the physically relevant case of not too strong exchange,
Jz & 2�v2=W, the mean-field result is accurate. The DOS
obtained using SCTMA is displayed in Fig. 2. Taking
Jz=a

2 � 300 meV, na2 � 0:1, and S ¼ 1=2, we obtain
the estimate of mass m � 15 meV, which puts it in the
experimentally observable range.
An important consequence of a mass in the spectrum

Dirac fermions is the quantized half-integer Hall conduc-
tivity [24], even in the absence of magnetic field. Such an
anomalous quantum Hall effect (QHE) is a direct conse-
quence of the parity anomaly [25], which so far evaded
experimental observation. The magnetic ordering on the
surface provides a way to experimentally observe anoma-
lous QHE. This can be done, e.g., in a thin slab geometry,
where spins polarize in the same direction on the opposite
sides of the slab. Then the half-integer Hall conductivities

FIG. 2 (color online). Density of states of the topological
surface states with a band gap induced by ferromagnetic ordering
of adatoms. Density of states for different concentrations of
magnetic adatoms. Complete polarization was assumed, and
JzS ¼ 0:5Wa2, W ¼ 0, 3 eV.
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of the two surface add, giving a quantized Hall conductiv-
ity e2=h. We note that realization of the anomalous QHE
state requires a small symmetry-breaking magnetic field,
otherwise the system will break into domains of opposite
polarization, giving rise to current-carrying domain-wall
excitations.

Now we analyze the effect of potential impurities on
the interactions and ordering of magnetic impurities.
Experimentally, potential disorder is inevitably introduced
by chemical doping. The disorder causes an exponential
decay of the impurity-averaged RKKY interactions at large
distances [11], similar to the case of disordered metals
[26]. The relevant length scale ‘dis is given by (twice) the
Green’s function decay length at " ! 0. For strong non-
magnetic impurities, it reads [12,22]

‘dis � 1
ffiffiffiffiffiffi
np

p log
W2

v2np
; (12)

where np is the density of nonmagnetic impurities, and we

neglected factors of order of unity. The sample-specific
RKKY interactions are random, have the Dzyaloshinskii-
Moriya form, and decay as a power law [26]. Therefore, at
large densities of nonmagnetic impurities, np � nm, the

RKKY interaction is frustrated and magnetic ordering is
suppressed, while the SG phase is favored at T ¼ 0 at any
Jk=Jz. Thus, magnetic ordering can only be observed in

clean samples, np 
 nm.

Finally, we discuss the effect of warping and finite
doping on the magnetic ordering of adatoms. The warping
of the Fermi surface will not change the qualitative behav-
ior; its main effect will be to break the symmetry of the
spin interactions down to a group of discrete rotations and
to slightly shift the phase boundaries. Similarly, in the
doped system, the phase diagram remains unchanged for
large enough adatom concentration, such that adatom sepa-

ration is smaller than the Fermi wave length, n�1=2
m 
 �F.

At small adatom concentration n�1=2
m * �F, the Fermi

surface effects make RKKY coupling sign changing. In
this case the RKKY interaction acquires a Dzyaloshinskii-
Moriya component [15], which frustrates interactions even
more. Thus a finite doping stabilizes the SG phase.

Recently, we have become aware of an experimental
work [27], where deposition of magnetic impurities was
used as a tool to modify properties of Bi2Se3. Above
certain density, ferromagnetic ordering, leading to a gap
opening, was observed, in agreement with our analysis
above. The suppression of ordering at low densities nm
observed experimentally is likely due to potential disorder,
which stabilizes SG phase, as discussed above.
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