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Sr2IrO4 has been suggested as a Mott insulator from a single Jeff ¼ 1=2 band, similar to the cuprates.

However, this picture is complicated by themeasured largemagnetic anisotropy and ferromagnetism. Based

on a careful mapping to the Jeff ¼ 1=2 (pseudospin-1=2) space, we propose that the low energy electronic

structure of Sr2IrO4 can indeed be described by a SU(2) invariant pseudospin-1=2 Hubbard model very

similar to that of the cuprates, but with a twisted coupling to an external magnetic field (a g tensor with a

staggered antisymmetric component). This perspective naturally explains the magnetic properties of

Sr2IrO4. We also derive several simple facts based on this mapping and the known results about the

Hubbard model and the cuprates, which may be tested in future experiments on Sr2IrO4. In particular, we

propose that (electron-)doping Sr2IrO4 can potentially realize high-temperature superconductivity.

DOI: 10.1103/PhysRevLett.106.136402 PACS numbers: 71.10.Fd, 74.10.+v, 75.30.Gw

Various Ir oxides have recently become the platform to
study the interplay between strong spin-orbit (SO) interac-
tion and strong correlation effects. There has been an
experimental observation of a three-dimensional spin
liquid in a hyperkagome structure of Na4Ir3O8 [1].
Theoretical proposals such as the realization of correlated
topological insulators [2], the Kitaev model [3], and a
Dirac semimetal with surface ‘‘Fermi arcs’’ [4] in iridates
have been made as well. Here we propose that doped
Sr2IrO4 may realize high-temperature superconductivity
similar to the cuprates.

The crystal structure of Sr2IrO4 consists of two-
dimensional (2D) IrO2 layers, similar to the parent com-
pound La2CuO4 of the cuprates. The main difference is
that the oxygen octahedra surrounding Ir rotate along the
c axis by about 11� in a staggered pattern, enlarging the

unit cell by
ffiffiffi
2

p � ffiffiffi
2

p � 2 [5]. The electronic structure of
Sr2IrO4 is quasi-2D, but is expected to have several differ-
ences from the cuprates. Ir4þ has the electronic structure
5d5, so the t2g levels should to be active, while Cu2þ with

3d9 configuration has only the top eg level active. Ir as a 5d

transition metal is expected to have weaker correlation
effects than 3d elements (e.g., Cu). At this point one may
expect that Sr2IrO4 is a (multiband) weakly correlated
metal. But strong spin-orbit coupling of Ir dramatically
changes the story. The t2g levels are split by SO interac-

tions into a higher energy Kramers doublet (the
pseudospin-1=2 or Jeff ¼ 1=2 states) and two pairs of
lower energy ones (Jeff ¼ 3=2 states) [6]. These Jeff ¼
1=2 states are equal weight superpositions of all three t2g
orbitals, and this has been confirmed experimentally by
resonant x-ray scattering [7] and theoretically by LDAþ
SOþ U calculation [8]. With d5 configuration of Ir the
Jeff ¼ 1=2 states are half-filled. They have much smaller
band width than expected for the t2g levels without SO

interaction and therefore effectively enhanced correlation

effect. In the end Sr2IrO4 is a Mott insulator and exhibits
magnetic order below 240 K [9–11].
It is tempting to make the analogy between Sr2IrO4 and

the cuprates and speculate that doped Sr2IrO4 can also
realize the interesting physics in doped cuprates, e.g.,
superconductivity, pseudogap, stripe formation, etc. But
strong SO interaction, different active orbitals, and the
rotation of oxygen octahedra seem to significantly compli-
cate the problem. For example, Sr2IrO4 has very aniso-
tropic susceptibility and shows ferromagnetism (FM) with
large ferromagnetic moment �0:14�B per Ir [12], which
was attributed to Dzyaloshinskii-Moriya (DM) interaction
generated by the rotation of oxygen octahedra. However, it
has been pointed out by Jackeli and Khaliullin [3] that the
DM interaction can be removed by staggered rotation of
pseudospin spaces on Ir sites. We will extend this consid-
eration to the electronic model and show that Sr2IrO4 can
be approximately described by a SU(2) invariant one band
Hubbard model under careful interpretation. The Hubbard
model has a twisted coupling to external magnetic field,
namely, a g tensor with staggered antisymmetric compo-
nent. Except for this fact, the model of Sr2IrO4 remarkably
resembles that of the cuprate. By making analogies to the
cuprates we will propose that various interesting physics
including high-Tc superconductivity may be realized in
Sr2IrO4. Our formulation provides a simplified picture
(despite the complicated structure, strong SO coupling,
and nontrivial magnetism) for the electronic structure of
Sr2IrO4, and hopefully some guide for future experimental
researches.
The mapping to one band Hubbard model.—To begin

with we will treat Sr2IrO4 as quasi-2D and consider only
one IrO2 layer, which is schematically illustrated in Fig. 1.
Label the rotation angle of oxygen octahedron around Ir
site j by �j ¼ �j�, with �j ¼ �1 for the two sublattices

and � � 11� from experiments [5]. The crystal-field
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splitting of t2g and eg levels and projection to Jeff ¼ 1=2

states should be implemented in the rotated local cubic
axis. Label the global axis by x, y, z and local cubic axis
(on site j) by X, Y, Z (see Fig. 1). The unit vectors of these
two coordinates systems are related by

X̂¼ x̂cos�j þ ŷ sin�j; Ŷ ¼�x̂ sin�j þ ŷcos�j;

Ẑ¼ ẑ:
(1)

The Jeff ¼ 1=2 states are (see, e.g., Ref. [6], the phase

convention here is slightly different, i ¼ ffiffiffiffiffiffiffi�1
p

)

jJzeff ¼ þ1=2i ¼ 1ffiffiffi
3

p ðþijXY; "i � jXZ; #i þ ijYZ; #iÞ;

jJzeff ¼ �1=2i ¼ 1ffiffiffi
3

p ð�ijXY; #i þ jXZ; "i þ ijYZ; "iÞ:
(2)

XZ, YZ, XY are the t2g orbitals defined in the local cubic

axis. " , # indicate spin states (defined also in the local cubic
axis). Note that although the elongation of oxygen octahe-
dra along c axis is expected to change the relative weights
of the three orbitals [3,6], this has not been observed
in resonant x-ray scattering experiment [7] or LDAþ
SOþ U calculation [8].

As the first approximation, the effective electronic
Hamiltonian should be the projection of full Hamiltonian
on the subspace of Jeff ¼ 1=2 states. Considering first the
Hamiltonian on the t2g subspace, we expect the following:

(1) the t2g orbitals should be defined in the local cubic axis

basis, because the crystal field on Ir 5d orbitals from
neighboring oxygens is diagonal only in the local cubic
axis; (2) assuming that hoppings between Ir sites are
mediated by the oxygen 2p orbitals, simple symmetry
consideration shows that effective hoppings between
nearest-neighbor Ir are orbital diagonal (one t2g orbital

does not hop to another orbital) only in the local cubic
axis basis; (3) if the spin spaces are defined in the global
axis basis, the effective hoppings of Ir t2g orbitals will be

real. Two tight-binding models on the t2g subspace have

been obtained by fitting LDAþ SOþ U dispersions in
Refs. [8,13], and both have this property of real orbital
diagonal hoppings, but no clear interpretation was given.
The discussion above shows that the orbitals in these
models should be interpreted as the t2g orbitals in the local

cubic axis, while the spins in these models are defined in
the global axis.

The spin space on every site should be first rotated to
local axis before the projection to the Jeff ¼ 1=2 states,
because the spins used in (2) are defined in local axis.

Namely, we need to interpret the electron operators cyj;a;�
used in these models, on site j for orbital a ¼ XZ, YZ, XY
with spin �, as creation operators for the states

ei���j=2jj; a; �i, where �� ¼ �1 for spin index � ¼" , #
respectively.
Define d" and d# as the annihilation operators for the

jJzeff ¼ �1=2i states (2), respectively. The projection on

the Jeff ¼ 1=2 subspace is implemented by the following

substitution, cyj;XY;� ! ���i
ffiffiffiffiffiffiffiffi
1=3

p
ei���j=2dyj;�, cyj;XZ;� !

��
ffiffiffiffiffiffiffiffi
1=3

p
ei���j=2dyj;��, and cyj;YZ;� ! �i

ffiffiffiffiffiffiffiffi
1=3

p
ei���j=2dyj;��.

The onsite interactions between t2g orbitals will be pro-

jected into an onsite U term of the Hubbard model for
the Jeff ¼ 1=2 states due to time-reversal symmetry and
charge conservation.
We take as a concrete example the tight-binding model

of Ref. [13]. It involves nearest-neighbor (NN) XY hopping
t1 ¼ 0:36 eV, NN XZðYZÞ hopping along the xðyÞ direc-
tion t4 ¼ 0:37 eV, NN XZðYZÞ hopping along the yðxÞ
direction t5 ¼ 0:06 eV, next-nearest-neighbor XY hopping
t2 ¼ 0:18 eV, and third-neighbor XY hopping t3 ¼
0:09 eV. The resulting one band Hubbard model after
projection is

H ¼ � X
hjki;�

ðtþ i���j �tÞdyj;�dk;� � X
hhjkii;�

t0dyj;�dk;�

� X
hhhjkiii;�

t00dyj;�dk;� þU
X
j

dyj;"dj;"d
y
j;#dj;#; (3)

with � ¼" , # , and the effective hoppings are t ¼ ð1=3Þ�
ðt1 þ t4 þ t5Þ cos� � 0:258 eV, �t ¼ ð1=3Þðt1 � t4 � t5Þ�
sin� � �0:0045 eV, t0 ¼ ð1=3Þt2 � 0:06 eV, t00 ¼
ð1=3Þt3 � 0:03 eV. �t is very small and will be ignored
hereafter. In general �t can be absorbed into t by a unitary

transformation dj;� ! ei���j�=2 ~dj;� with � ¼ arc tanð�t=tÞ,
but we will not elaborate on this. The value of U has been
estimated as �2 eV [8,11]. This t� t0 � t00 �U model
has been widely used as an effective model for the cup-
rates, although the parameters here have different values.
With large U and at half-filling the model (3) is a

Mott insulator described by a pseudospin-1=2 model
with SU(2) symmetry. If second- and third-neighbor
t0, t00 are ignored the half-filling pseudospin model to
the lowest order of t=U is just the Heisenberg antiferro-
magnetic (AFM) model of pseudospins J, HAFM ¼P

hjkið4t2=UÞJj � Jk. Each pseudospin has three compo-

nents (a ¼ 1, 2, 3) Jj;a ¼ ð1=2ÞP�;�d
y
j;�ð�aÞ��dj;�, where

� are Pauli matrices and �, � ¼" , # label the Jzeff ¼ �1=2
states.
Coupling to external magnetic field.—Although the

effective model (3) looks exactly like the model of the
cuprates, the coupling to external magnetic field in Sr2IrO4

is quite different.

x

y

Y
X

X
Y

FIG. 1. Schematic picture of one IrO2 layer. Large filled or
open circles indicate the Ir atoms on two sublattices. Small open
circles are oxygens. Small x, y are the global axis, while capital
X, Y indicate local cubic axis (sublattices dependent).
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Assume the coupling ofmagnetic fieldB on Ir 5d orbitals
is described by the atomic form (more careful treatment can
be found in, e.g., Ref. [6]),HB ¼ ��BB � ðLþ 2SÞ, where
�B is the Bohrmagneton. After projection to the Jeff ¼ 1=2
states it becomes HB ¼ 2�BB � J ¼ 2�BðBXJ1 þ BYJ2 þ
BZJ3Þ. Note that BX;Y;Z are components of field on the

local cubic axis, BX ¼ B � X̂ etc. Use the relation (1), the
coupling on site j in terms of the field components on
the global axis, Bx, By, Bz, is

HB;j ¼ 2�B½Bj;xðJj;1 cos�j � Jj;2 sin�jÞ
þ Bj;yðJj;2 cos�j þ Jj;1 sin�jÞ þ Bj;zJj;3:� (4)

Therefore the observable magnetic momentMj on site j

has the following components on the global axis,

Mj;x

Mj;y

Mj;z

0
B@

1
CA¼�2�B

cos� ��j sin� 0
�j sin� cos� 0

0 0 1

0
@

1
A

Jj;1
Jj;2
Jj;3

0
B@

1
CA: (5)

If �t in (3) is not ignored � � 11� in (5) should be replaced
by �� arc tanð�t=tÞ � 12�. This nontrivial relation be-
tween moments M and pseudospins J, namely, a g-tensor
with a staggered antisymmetric component, has several
interesting consequences which we list below. (i) By quan-
tumMonte Carlo studies [14] the square lattice Heisenberg
model has a Néel ground state with staggered ‘‘magneti-
zation’’ jh�jJjij � 0:307. However because of the relation

(5), the ordered moments do not form a simple collinear
Néel pattern. If the ordered moments lie in the xy plane,
they will be rotated together with the oxygen octahedra in a
staggered pattern and therefore create a net ferromagnetic
moment per site, 2�Bjh�jJjij sin� � 0:12�B. This is very

close to the experimentally observed value 0:14�B [12].
(ii) By the relation (5) we can relate pseudospin correlation
functions of model (3) to moment correlation functions
which is actually measured by susceptibility or magnetic
neutron or x-ray scattering experiments. The Fourier com-
ponents of moments with wave vector q and frequency! is
related to pseudospins by,

Mq;!;x ¼ �2�B½cos�Jq;!;1 � sin�JqþQ;!;2�;
Mq;!;y ¼ �2�B½cos�Jq;!;2 þ sin�JqþQ;!;1�;
Mq;!;z ¼ �2�BJq;!;3:

where Q ¼ ð	;	Þ is the wave vector of Néel order.
In the paramagnetic phase the dynamical susceptibility

abðq; !Þ, which is proportional to the ‘‘moment structure
factor’’ hMq;!;aM�q;�!;bi, is related to the dynamical

pseudospin susceptibility 
ab
J ðq; !Þ ¼ �ab
Jðq; !Þ /

hJq;! � J�q;�!i by

xxðq; !Þ ¼ 
yyðq; !Þ

¼ cos2�
Jðq; !Þ þ sin2�
JðqþQ; !Þ;

zzðq; !Þ ¼ 
Jðq; !Þ, and other components of 
ab

are zero. In particular the measured static uniform

(! ¼ 0, q ¼ 0) susceptibility in xy plane is actually a
mixture of the uniform and staggered susceptibility of the
SU(2) invariant Hubbard model. This explains in a differ-
ent perspective the measured large anisotropy of uniform
susceptibility and the ferromagnetic Curie-Weiss law [12].
In our picture the anisotropy is not mainly from easy axis
interaction suggested by Ref. [12] but from the mixing
of large staggered susceptibility, and the FM Curie-Weiss
law comes from the contribution of staggered susceptibil-
ity close to AFM Néel order of pseudospins. (iii) In
the high-temperature paramagnetic phase above the Néel
ordering temperature, the measured moment-moment
correlation will be dominated by the staggered pseudospin
correlation of a SU(2) invariant model, although the
measured susceptibility shows significant anisotropy.
The moment-moment correlation length will behave like
the 2D Heisenberg model [15], which has recently been
observed by magnetic x-ray scattering [16].
Possible high-temperature superconductivity.—If the

one band Hubbard model (3) is indeed a good approxima-
tion of the electronic structure of Sr2IrO4, and if the high-
temperature superconductivity in doped cuprates is indeed
described by the one band Hubbard model, a natural
consequence is that doped Sr2IrO4 will realize high-
temperature superconductivity. In the following we list
several direct consequences from this analogy. (i) It is
believed that the sign and magnitude of t0 is important
for high Tc in the cuprates and likely responsible for the
particle-hole asymmetry of the phase diagram (see, e.g.,
Ref. [17]). The relative magnitude jt0=tj � 0:23 for
Sr2IrO4 is similar to the cuprates. However, the sign of t0
for Sr2IrO4 is opposite to that of the cuprates. This can be

remedied by a particle-hole transformation dj;� ! �jd
y
j;�.

Therefore we expect that the doping phase diagram of
Sr2IrO4 will be the particle-hole conjugate of the cuprates,
in particular, high Tc will be easier to achieve on the
electron-doped side of Sr2IrO4, e.g., with La substitution
of Sr. Interestingly electron-doped Sr2IrO4�� has recently
been synthesized and metallic behavior was reported for
� ¼ 0:04 [18]. (ii) The interlayer hopping of the cuprates is
of the form t?ðkkÞ ¼ t?0v

2 with v ¼ ðcoskx � coskyÞ=2,
due to the dx2-y2 orbital content [19]. This together with

the dx2-y2 nodal pairing symmetry significantly suppress

transport along the c axis, making the superconducting
properties of the cuprates very anisotropic. However, the
resistivity anisotropy �c=�ab of Sr2IrO4 is only 102–103

[20], very small compared to 104–105 of the cuprates [21],
which implies a larger t?0 for Sr2IrO4. The active orbitals
for Sr2IrO4 is very different from the cuprates and the
factor v2 should be different and not vanish on the nodal
direction. Both facts suggest that Sr2IrO4 should have more
isotropic superconducting properties, which is beneficial
for practical applications. (iii) The pairing will be a
pseudospin singlet dx2-y2 pairing and in many ways behave

like the d-wave pairing of the cuprates. Phase sensitive and
other indirect measurements used to determine the d-wave
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symmetry in the cuprates can be applied to doped Sr2IrO4

as well. (iv) The energy scale of the one band Hubbard
model for Sr2IrO4 is lower than that of the cuprates by
about 50%. Therefore the Tc of doped Sr2IrO4 will likely
be lower than the cuprates.

Discussion and conclusion.—The one band Hubbard
model (3) is of course the zeroth order approximation of
the low energy electronic structure of Sr2IrO4. Indeed there
is experimental and theoretical evidence [8,11,13] that
the Jeff ¼ 3=2 bands overlap with the Jeff ¼ 1=2 band
and therefore strong exchange anisotropy might be present.
However, the observed scaling of correlation length fol-
lows that of isotropic the Heisenberg model above Néel
temperature [16], and the Jeff ¼ 3=2 bands are completely
below Fermi level for about 0.3 eV from the ARPES results
[11]. We thus believe that for magnetic properties above
the Néel temperature and for electron-doped Sr2IrO4 this
SU(2) invariant one band Hubbard model is still a good
description.

The projection to one band Hubbard model was also
implemented in Ref. [8]. The resulting hoppings reported
in Eqs. (7) and (8) of Ref. [8] suggest that the authors of
Ref. [8] interpreted the orbitals in their t2g tight-binding

model as the global axis basis xz, yz, xy. Here we have
argued that the orbitals should be interpreted as the local
axis basis which produces a projection result [�t0 ¼
�ð2t0=3Þ cos� and �t1 ¼ 0] different from Ref. [8].

In summary we have performed the projection of the
electronic structure of Sr2IrO4 to the Jeff ¼ 1=2 states and
carefully deduced the resulting one band Hubbard model
and its interpretation. We provide another perspective on
the magnetic properties of Sr2IrO4 by viewing it as a SU(2)
invariant Hubbard pseudospin-1=2 model, but with a
twisted relation (5) between the observable moments and
the pseudospin degrees of freedom, namely, a g tensor
with staggered antisymmetric component. One direct con-
sequence is that the measured uniform susceptibility in the
ab plane is actually a mixture of uniform and staggered
susceptibility of the SU(2) invariant Hubbard model.
Despite the complication of strong SO interaction, differ-
ent active orbitals, and structure distortion, the effective
one band Hubbard model of Sr2IrO4 remarkably resembles
the cuprates. We thus propose that doped Sr2IrO4 can
realize high-temperature superconductivity, and poten-
tially other interesting physics of the cuprates. By compar-
ing the model parameters we suggest that electron doping
of Sr2IrO4 will be the analogue of hole doping of the
cuprates. This can be achieved by La substitution of Sr,
or O deficiency [18], and maybe by field effect on thin
films [22], or interfacing with other oxides [23]. We hope
these simple theoretical observations will stimulate more
experimental research on Sr2IrO4.
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