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Dense particle packings acquire rigidity through a nonequilibrium jamming transition commonly

observed in materials from emulsions to sandpiles. We describe athermal packings and their observed

geometric phase transitions by using equilibrium statistical mechanics and develop a fully microscopic,

mean-field theory of the jamming transition for soft repulsive spherical particles. We derive analytically

some of the scaling laws and exponents characterizing the transition and obtain new predictions for

microscopic correlation functions of jammed states that are amenable to experimental verifications and

whose accuracy we confirm by using computer simulations.
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About 50 years ago, Bernal [1] used dense disordered
sphere packings as model systems to understand the liquid
state, at a time when the statistical mechanics of liquids
was still in its infancy. Today, the idea that jammed mate-
rials share deep similarities with dense liquids and glasses
remains popular [2]. However, while liquid state theory
grew as a cornerstone of theoretical physics [3], no equiva-
lent theory is available for jammed matter, because this is a
nonequilibrium, amorphous, athermal state of matter—a
theoretical challenge overlooked by Bernal. Thus, despite
intense research activity [4–6] with a large body of nu-
merical and experimental observations [7,8], it is not yet
clear what the appropriate theoretical framework is to
understand dense athermal packings and the intriguing
phase transitions they undergo, although foams, pastes,
and emulsions are familiar materials.

We address the purely geometrical packing problem
of soft spheres and suggest to study first their statistical
mechanics at finite temperatures T before taking the T ! 0
limit where jamming occurs. A similar approach is fre-
quently used in combinatorial optimization problems [9],
because powerful statistical mechanics tools can then be
used in a context where they are not a priori relevant [10].
We investigate the statistical mechanics of the system
at T � 0 by using mean-field theory [6,11] and develop a
fully microscopic theoretical scheme to predict the struc-
ture of nonequilibrium configurations of soft repulsive
spheres at zero [12] and finite [13] temperatures.

Our microscopic approach is thus markedly different
from recent theoretical works [4,5], which are based on
phenomenological and scaling considerations. Similarly to
the Landau-Ginzburg theory of phase transitions, our aim
is to derive, from first principles, the correct qualitative
description of the transition and accurate quantitative
predictions for several observables. However, as a mean-
field theory, our approach does not describe well all

fluctuations near the transition and the associated scaling
laws [5,7].
To make our approach concrete, we study an assembly

ofN spherical particles of diameter� enclosed in a volume
V in three spatial dimensions, interacting with a soft re-
pulsion of finite range. To fix ideas we choose

Vðr � �Þ ¼ �ð1� r=�Þ�; Vðr > �Þ ¼ 0; (1)

with r the interparticle distance, � the strength of the
repulsion, and � ¼ 2 (harmonic repulsion). Although
several systems are described by a Hertzian repulsion
(� ¼ 3

2 ), the harmonic model originally proposed to de-

scribe wet foams [14] has become a paradigm in numerical
studies of the T ¼ 0 jamming transition [7,8]. It was also
studied at finite temperatures [13,15] and finds experimen-
tal realizations in emulsions and soft colloids. The choice
� ¼ 2 is also technically more convenient, but we empha-
size that our approach is easily generalized to any repulsive
potential. The model has two control parameters: the tem-
perature T and the fraction of the volume occupied by
the particles in the absence of overlap: ’ ¼ �N�3=ð6VÞ.
We set � and � to unity.
Over the past decade, a number of numerical observa-

tions were reported for this model [8]. A jamming transi-
tion is observed at T ¼ 0 at some critical volume fraction
’j, the density above which packings carry a finite density

of particle overlaps. Numerically, energy density egs and

pressure P are found to increase continuously from zero
above ’j as power laws [7]. The pair correlation function

of density fluctuations [3], gðrÞ, develops singularities near
’j [12], which are smoothed by thermal excitations [13].

In particular, gð1Þ ¼ 1 at ’j and T ¼ 0, which implies

that the density of contacts between particles, z, jumps
discontinuously from 0 to a finite value zc at ’j. Above

’j, z increases algebraically with ’ [7,8]. Thus, jamming

appears as a phase transition taking place in the absence
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of thermal motion, with a peculiar critical behavior and
observable physical consequences [8].

The success of our approach relies on its ability to
accurately describe dense systems of harmonic spheres at
very low T, which is theoretically challenging [16]. Simple
liquid state theories, such as integral equations [3], work
well for dense systems only when T is not too low [17].
At lower T, numerical simulations [15] indicate the ap-
pearance of a complex free energy landscape associated
with slow dynamics, as found in glass-forming liquids.
Theoretically, the mode-coupling theory of glasses can
be applied [18] but gives only limited dynamical insights,
in particular, failing to identify the jamming transition
[16]. For structure, a possible path is a recently developed
analytical approach based on replica calculations [11,19].
While generic in principle, the method requires in practice
specific approximations. We have found that prior works
on Lennard-Jones [11] and hard sphere [6] models fail
when directly applied to models of harmonic spheres
near jamming [16]. The main technical achievement of
the present Letter is the derivation of a new analytical
scheme to compute the structure and thermodynamics of
the model (1) over a range of parameters broad enough to
allow the study of the T ¼ 0 jamming transition.

We introduce m copies of the system of harmonic
spheres as a mathematical tool to probe its complex free
energy landscape [19] and develop approximations to
study the statistical mechanics of the replicated liquid by
using an effective potential approach [6], as sketched in
Fig. 1. We make a Gaussian ansatz for the probability
distribution of replicated particles around the center of
mass of the ‘‘molecules’’ shown in Fig. 1, �ðx1 . . .xmÞ ¼R
d3X

Q
m
a¼1ð2�AÞ�3=2e�ðxa�XÞ2=ð2AÞ, which defines the

cage size A. Our central approximation is now performed,

in which only two-body interactions between particles in
copy 1 induced by the coupling to the other (m� 1) copies
are retained; see Fig. 1. Consider two molecules, each
composed of m particles with positions (x1 . . .xm) and
(y1 . . . ym): The effective potential between the particles
of replica 1 is obtained by averaging the total interactionP

m
a¼1 Vðxa � yaÞ over the positions of particles within the

(m� 1) remaining replicas:

e��Veff ðx1�y1Þ �
Z
d3x2d

3y2 . . .d
3xmd

3ym

�
�
�ðx1 .. .xmÞ�ðy1 .. .ymÞ

Ym

a¼1

e��Vðxa�yaÞ
�
:

Thanks to the Gaussian form of the integral, the latter
expression can be rewritten as follows:

e��Veff ðrÞ ¼ e��VðrÞ

r
ffiffiffiffiffiffiffiffiffiffi
4�A

p
Z 1

0
du

�
e�ðr�uÞ2=4A

� e�ðrþuÞ2=4A
�
uqm�1ðuÞ; (2)

where qðuÞ ¼ R
d3te��Vðu�tÞe�t2=ð4AÞ=ð4�AÞ3=2 has an ex-

plicit expression in terms of error functions and � ¼ 1=T.
Finally, the free energy Fðm;A;’; TÞ is obtained by con-
sidering VeffðrÞ �mVðrÞ as small, which becomes exact
when A ! 0 [see Eq. (2)], and doing standard perturbation
theory [3] around the liquid with potential mVðrÞ, which is
equivalent to a liquid with potential VðrÞ at temperature
T=m. We obtain an effective one-component system with a
free energy parametrized by A and m:

Fðm;A;’; TÞ ¼ Fharmðm;AÞ þ Fliq

�
’;

T

m

�

� 3’T

�

Z
drgliq

�
r; ’;

T

m

�

� ½e��½Veff ðrÞ�mVðrÞ� � 1�; (3)

where Fliqð’; TÞ and gliqðr; ’; TÞ are, respectively, the

free energy and pair correlation function of the original
(nonreplicated) fluid and Fharm ¼ � 3T

2 ½ðm� 1Þ lnð2�AÞþ
m� 1þ lnm� is the ideal gas contribution for the repli-
cated system [11]. Thus the core of the approximation is
embodied by the effective potential VeffðrÞ. Physically, the
presence of (m� 1) replicas induces near jamming a
strong short-range effective attraction, similar in spirit to
depletion forces in colloid-polymer mixtures [6].
Our task becomes the study of a complicated effective

fluid described by Eq. (3). To simplify calculations we
perform a standard approximation,

gliqðr; ’; TÞ � e��VðrÞyðr; ’; TÞ � e��VðrÞyð1; ’; 0Þ; (4)

well-suited to study the T ! 0 limit [3]. To compute Fliq

and yð1; ’; 0Þ analytically, we choose the hypernetted
chain approximation [3], although more elaborate closure
relations [3] could be used. This could change slightly the
location of the transition but not its nature or the scaling
predictions we derive. Finally, to obtain concrete results
for a given state point ð’; TÞ, we minimize the free energy

Veff

A

FIG. 1 (color online). Sketch of the derivation of the replicated
free energy and effective potential in Eq. (3). Each particle in the
original liquid is replicated m times (dashed spheres). Assuming
that the replicated particles form a molecule of average cage
size A, we trace out in the partition sum the degrees of freedom
of (m� 1) copies of the liquid to obtain an effective one-
component liquid (black spheres) interacting with an effective
pair potential VeffðrÞ (green lines).
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with respect to the cage size A and, in the glass phase, to
the replica number m [19].

We first determine the location of the transition between
the fluid and glass phases, signaled by the appearance of
a free energy minimum with m< 1 [11,19]; see Fig. 2.
A finite temperature glass transition TK emerges continu-
ously from zero above ’K � 0:577, as TK � ð’� ’KÞ2.
We obtain the full thermodynamic behavior in the glass
phase (notably energy, pressure, specific heat, and glass
fragility), which compares qualitatively well with numeri-
cal results [15]. In particular, the ground state energy and
pressure remain zero across ’K, showing that, just above
’K, T ¼ 0 glasses are not jammed. In these glassy states,
like in a hard sphere crystal, particles can vibrate near
well-defined (but random) positions, and the system is
not jammed [6].

We now concentrate on the T ! 0 limit at large volume
fraction in the glass phase. We obtain the ground state
energy shown in Fig. 2. As found in simulations [7], it
grows continuously from zero above a critical packing
fraction, egs � ð’� ’gcpÞ2, so that the pressure increases

linearly, P� ð’� ’gcpÞ. The ‘‘glass close packing’’ [6]

’gcp represents in our calculations the largest density

where T ¼ 0 glasses with no particle overlap exist.
Within the present approximation we obtain ’gcp ¼
0:633>’K. Thus, from the sole knowledge of VðrÞ in
Eq. (1), our theory predicts the existence and location of
a jamming transition deep in the glass phase and accounts
for its critical nature. Since a large number of metastable
states exist in the glass phase, our approach also directly
explains the strong protocol dependence of the critical
jamming density ’j observed in simulations [7,20], which

get arrested in nonequilibrium amorphous states and thus
jam at a critical packing fraction ’j < ’gcp. However, the

results we obtain near ’gcp below are found to hold for any

metastable glass and therefore also hold near any protocol-
dependent ’j.

We now turn to the calculation of the pair correlation
function near ’gcp. Within our approximation, gðrÞ is

directly related to the effective potential:

gðrÞ ¼ e��Veff ðrÞyð1; ’; 0Þ (5)

and comes as a direct result of the free energy minimiza-
tion. We concentrate on the physics of interparticle
contacts and thus focus on distances r � 1, in the vicinity
of the jamming transition (T 	 1, ’ � ’gcp).

At T ¼ 0, we find that gðrÞ develops a diverging peak
near contact, which obeys the following scaling law:

gðrÞ � j�’j�1F

�
r� 1

j�’j
�
; (6)

where F
ðxÞ are asymmetric scaling functions which
depend on the sign of �’ � ’� ’gcp and can be com-

puted analytically. In particular, logFþðxÞ / �x2 and
F�ðxÞ / x�2 when x � 1. Note that F�ðxÞ can be de-
rived by using the hard sphere potential [6]. The scaling
(6) means that the peak height gmax diverges as j�’j�1 on
both sides of the transition at T ¼ 0 (see Fig. 3), while its
width vanishes as j�’j. This behavior was found in simu-
lations [12]. In Fig. 4, we show not only that numerical
results obey the scaling form in Eq. (6), but also that
the asymmetric shape of the scaling functions compares
extremely well with our theoretical predictions.
At very low but finite temperature, the peak divergence is

smoothed by thermal fluctuations, which was the focus of a
recent study [13]. In Fig. 3, we show the predicted smooth
evolution of gmax when ’gcp is crossed at finite T. A non-

monotonic evolution with density is obtained, as in experi-
ments [13,21]. The position of themaximum evolves withT
with a scaling in perfect agreement with numerical work

FIG. 2 (color online). Theoretical phase diagram of soft re-
pulsive spheres. The glass transition temperature TK sepa-
rates the liquid and glass phases with TK � ð’� ’KÞ2 near
’K � 0:577. At T ¼ 0, the glass jams under compression across
’gcp � 0:633, above which no glass state with no particle over-

lap exists at T ¼ 0. Thus, the ground state energy egs increases

continuously from 0 as egs � ð’� ’gcpÞ2.

FIG. 3 (color online). Evolution of the maximum of the pair
correlation function near contact with T and ’. While gmax

diverges on both sides of the transition at T ¼ 0 as gmax � j’�
’gcpj�1, this divergence becomes a smooth maximum at finite T

near the transition whose position shifts as
ffiffiffiffi
T

p
(dashed line), as

observed numerically [12,13] and experimentally [13,21].
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[13]. We go further and predict the thermal broadening of
gðrÞ; see Fig. 4. We obtain nearly perfect agreement of
theory with simulations over several decades of tempera-
tures with no adjustable parameter. The full scaling of gðrÞ
near contact, as a function of T and �’ near the jamming
transition, is themain new achievement of the present work.

Finally, we obtain the number of contacts per particle
by integration: z ¼ 24’

R1
0 drr2gðrÞ. The diverging peak

described by Eq. (6) gives a discontinuous jump of z from
0 to zc ¼ 6, the celebrated isostatic value, at ’gcp, as

observed [1,7,8] and already derived in Ref. [6]. Above
the transition we find z� zc / ð’� ’gcpÞ� with � ¼ 1.

The exponent is in quantitative disagreement with the
observed � ¼ 1

2 [7]. Indeed, this exponent has been related

to the presence of fluctuations [5] that are presumably not
well captured by our mean-field theory, indicating that
more detailed calculations (possibly based on the renor-
malization group [22]) should be developed to predict gðrÞ
over a broader range of interparticle distances.

Our results show that the fully nonequilibrium problem
of soft particle packings, relevant to understanding the
mechanical properties of many soft materials, can be
successfully addressed by using equilibrium statistical
mechanics tools. As an application we have developed a
many-body theory of the jamming transition of soft repul-
sive spheres which satisfactorily derives, from first prin-
ciples, the existence and location of a jamming transition,
and some of its peculiar critical behavior, and makes new

predictions for correlation functions of jammed states. Our
approach is general enough that it can be systematically
improved and generalized to various models, such that new
or more precise predictions could be made, hopefully
fostering more numerical or experimental work. While
Bernal saw packings as simplified models for atomic
liquids, it is equally useful to consider packings as a special
class of disordered ground states.
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[9] M. Mézard and A. Montanari, Information, Physics, and

Computation (Oxford University, New York, 2009).
[10] F. Krzakala and J. Kurchan, Phys. Rev. E 76, 021122

(2007).
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tions (symbols). Left panels: Scaling behavior at T ¼ 0 above
(top) and below (bottom) the jamming transition showing the
convergence of the first peak near r ¼ 1 to a delta function with
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Right panels: The first peak of the pair correlation broadens
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ease visualization, we show the evolution of gðrÞ=gmax, where
gmax can be read from Fig. 3.
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