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Coherent Vortices in Strongly Coupled Liquids
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Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are
unique in the sense that their average potential energy per particle dominates over the average kinetic
energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the

emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype
two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly
obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD
simulations reveal that the tripolar vortices persist over several turn over times and hence may be
observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems

such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
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The emergence of coherent structures is a preeminent
feature of both freely decaying and forced two-
dimensional (2D) Navier-Stokes turbulence—a subject
that has been of great interest to the physics community
for the past three decades [1-3]. For decades, physicists
have been fascinated by two main characteristics of these
isolated coherent vortices: first, they are long-lived, which
implies that they can last for several eddy turnover times
and second, their ability to remarkably enhance transport
length scales. A thorough understanding of the evolution
and dynamics of these coherent structures is extremely
important because of their relevance to large scale plane-
tary fluid dynamics [4], astrophysical flows [5] and turbu-
lent transport in fusion plasmas [6], to mention a few.
In their seminal experimental work, Van Heijst and
Kloosterziel showed the emergence of a coherent structure,
the tripole, from an unstable cyclonic vortex in a homoge-
neously rotating fluid [7]. They found that the tripole was a
very stable structure which could persist even in a highly
sheared environment. Later Carton et al. [8] studied the
generation of tripoles from the instability of axisymmetric
monopoles through numerical simulations of barotropic
equations. Since then, a great amount of work has been
done to show the emergence of coherent vortices in the
decay of an unstable axisymmetric vortex [9,10]. However,
their emergence in such weakly coupled systems raise a
few very important questions: Can coherent structures like
tripoles emerge in strongly coupled liquids like complex
plasmas, condensed matter systems and astrophysical sys-
tems such as white dwarfs, thereby making this phenome-
non universal? Can we study the growth and saturation
of these structures in laboratory experiments? What
determines the lifetime of these vortices in such strongly
coupled liquids? Recently, a study of Kelvin-Helmholtz
(KH) instability in strongly coupled Yukawa liquids was
reported using large scale molecular dynamics (MD) simu-
lations [11], wherein, coherent vortices were seen to
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evolve in the nonlinear regime. An important question
which immediately follows is the emergence and stability
of isolated coherent vortices in strongly coupled liquids,
which is the subject matter of the present work.

As we will be using a Yukawa liquid as a prototype
model for a strongly coupled liquid, we take a closer look
at the constituents of a typical Yukawa liquid or a complex
plasma. A typical laboratory produced complex plasma
is composed of weakly ionized gas and charged dust
grains and can be modeled by a Yukawa potential
U =[0Q?*/(4meyr)]exp(—r/Ap), where Q is the dust
charge, Ap is the Debye length of the background plasma
and r is the radial distance between two dust grains. In a
strongly coupled complex plasma, the coupling parameter
I' = Q?/(4meyaT,) can be easily of the order 1 or larger
(T, and a are the dust temperature and the Wigner-Seitz
radius, respectively). Complex plasmas offer a perfect
testbed for numerous fluid dynamics studies and several
authors have investigated the flows in complex plasma
using both theoretical [12] and experimental methods
[13]. It is important to note that the above said works
rely on conventional fluid theories which have several
limitations in presence of strong coupling effects, such as
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy closure issues [14]. To address these issues, several
lower dimensional models have been proposed which at-
tempt to approximately describe these strongly coupled
systems [15]. As can be expected, the validity of these
models across a wide range of coupling parameter remains
unclear [16]. Hence in order to correctly describe these
systems it becomes imperative to invoke ‘“first principles”
MD simulations which numerically solve the N body
problem “exactly.”

We have performed large scale MD simulations to study
the emergence and evolution of coherent structures in a 2D
strongly coupled Yukawa liquid. The Yukawa liquid can be
fully characterized by two dimensionless numbers: (i) the
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coupling parameter I', and (ii) the screening parameter
k = a/Ap. The length, time and energy are normalized
to a, Q' and Q*/(4meya), respectively [11]. The plasma
frequency is given by Q.4 = [0?n/(2€yma)]"/?, where n
and m are the 2D dust number density and mass of the dust
grain, respectively. We take a total of 2.304 X 10° grains
for the 2D Yukawa liquid and periodic boundary conditions
are employed along X and §. The number density n of the
Yukawa liquid is taken to be 1, which gives us a square
region of size L = 480, centered at origin (0,0). The value
of screening parameter « in all our simulations is taken
to be 0.5. The initial state is prepared by first connecting
the 2D system to a Gaussian thermostat [17] and letting it
evolve canonically for ZOOQp’d'. We then remove the
thermostat and let the system evolve for another SOQP_d1

microcanonically. A standard leapfrog integrator with a
time-step AT = O.OlQ;d1 is employed such that the fluc-
tuation in total energy is less than 10~4% over a typical run
duration of IOOOQEdl. The initial equilibrium is a thermally
equilibrated Yukawa liquid at a desired I" along with the
following azimuthal velocity profile superposed on grain
velocities (only once at time ¢ = 0). Thus, we have, in
polar coordinates (r, 6):

V,=0, Vg = Vo(1 + Acos(m,,0)) (D
where V, is the basic azimuthal velocity profile given by

Vo = 2.25(r/1) exp( — (r/1)°) )

m, is the mode number excited, A is the perturbation
amplitude taken as 0.1 and [ is the scale length of vorticity
variation which is taken to be 50. The corresponding basic
vorticity profile is given as wy =V XV, = —(4.5/])
[2.5(r/1)°> — 1]exp(—(r/1)*). Clearly this basic vorticity
profile exhibits two regions of oppositely signed vorticity
from the center to the periphery. This profile has a zero
net circulation ( [§ wordr = 0) and such vortices are also
known as ‘‘shielded vortices.” Our choice of velocity
profile [Eq. (1)] is physically motivated by extensive labo-
ratory experiments [7] and numerical simulations [8] in
fluid dynamics. We define an eddy turnover time for the
vortex as T = 2mr,,/Vy(,—,, ), Where r,, is the distance at
which V|, becomes maximum. Setting (dV,/dr)|,=, =0,

we get r,, = (1/5)"/51 and hence the turnover time
T = 1700;(1'. At a time t = 2.82 T into the simulation,
with initial I' = 50 and m, = 2 excited, a tripole vortex
has emerged from the centrifugal instability (Fig. 1). It will
be shown later (Fig. 4.) that m,, = 2 is the fastest growing
mode, thus leading to the formation of a tripole. The
snapshot shows the vorticity profile for the partial system
( £ 175, =175) and one can clearly see the compact region
having three aligned patches (a central core and the two
accompanying satellites containing cyclonic and anticy-
clonic vorticity, respectively). The total circulation within
the satellites is equal and opposite to the circulation within
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FIG. 1 (color). Tripole emerging at time ¢t = 2.82 T, starting
from an initial ' =50. The snapshot shows vorticity
(w =V X v) plot for only a partial system (% 175, *£175).
Grain velocities in the region are fluidized through a 45 X 45
grid to construct local vorticity. Blue and red regions correspond
to negative and positive vorticity, respectively, and the color-map
label shows the magnitude of local vorticity. Arrows indicating
direction of local velocity are obtained by fluidizing the grain
velocities over a 60 X 60 grid.

the central core. The tripole also exhibits a cyclonic rota-
tion around the central core and is seen to be a very stable
structure, sometimes persisting up to several turnover
times. The magnitude of local vorticity (@ = V X v) is
indicated on a vertical color-map label. The local velocity
v in the region is obtained by “fluidizing” the grain
velocities over a 45 X 45 grid which amounts to averaging
particle velocities locally to obtain fluid velocity at a grid

point. At I' = 50, the thermal velocity vy, = \/Z/_F =0.2
and the ratio v,/ Vor=r,) = 0.15. It should be noted that
the value of I' close to the vortex boundaries decreases
gradually in time due to shear induced heating [18] (not
shown here). The superposed arrows indicating the local
flow direction are obtained similarly from a 60 X 60 grid.

We have performed 2D MD simulations for the centrifu-
gal instability of the profile given by Eq. (1) at three
different values of initial coupling parameter I', namely
I'=1, 50, 100. A given mode m, = 2 is excited and
coherent tripolar vortices are seen to emerge close to the
end of the linear regime (Fig. 2). It is interesting to note
the following facts: At strongest coupling (I' = 100), the
tripole vortex decays into two dipoles propagating in op-
posite directions, whereas, at I' = 50, the tripole vortex is
very stable and persists up to the entire duration of MD
simulation (11.76 T). Such stable tripolar structures have
been reported in early fluid simulations of barotropic equa-
tions [8,9]. Those fluids, however, were uncorrelated and
without any strong coupling effects.

To understand the growth characteristic of a particular
mode m,, we study the time evolution of the perturbed
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FIG. 2 (color). Time evolution of the vorticity profile for
different values of initial I". The individual snapshots are shown
for the full system (= 240, =240) at times ¢ = 0, 2.94, 5.88, and
11.76 T for three values of initial I', namely I' = 1, 50 and 100
when a given mode (m, = 2) is excited. Rows and columns
show snapshots at constant I" and ¢ respectively. Blue and red
regions correspond to negative and positive vorticity, respec-
tively. At higher I"’s, the mode structures are more prominent
and at the lowest I' (highest temperature), the mode structures
are weak and look diffused due to random thermal collisions
between grains. It is interesting to note that for I' = 50, a tripole
persists (though rotating) throughout the total run duration,
whereas, at I' = 100, the tripole breaks into two propagating
dipoles moving in opposite directions until # = 11.76 when the
periodic boundaries come into play [see bottom-right].

kinetic energy along radial direction (#) normalized to its
initial value: |SE,| = [ (7 - v(1))*dxdy]/[ J (7 - v(0))*
dxdy]. Starting from an initial state of m, =2 and
I' = 50, we plot this perturbed kinetic energy as a function
of time and observe a linear growth eventually leading to a
nonlinear saturation at late times (Fig. 3). The dashed
line shows a fit to the initial linear growth regime. The
slope (2+y) of this fit gives the growth rate of the centrifugal
instability (y). One clearly sees the onset of nonlinear
saturation close to t = 2.82 T as shown by the vertical
dashed line.

Although MD simulation results presented so far are an
exact numerical solution to the N body problem and hence
“first principles” in nature, it will be interesting to see if a
lower dimensional fluid model can capture some of the
underlying physics of the centrifugal instability. A well-
known phenomenological fluid model for complex
plasmas is the generalized hydrodynamic (GH) model
[15,19,20] which attempts to describe strong coupling
effects through the introduction of memory dependent
viscoelastic coefficients. The GH model also has several
limitations [21] and in the case of parallel shear flows, the
comparison between MD simulations and GH model is at
best only qualitative [18]. However, in light of the fore-
going discussion, we obtain an analytical estimate of the
linear growth rate of the centrifugal instability using the
GH model. Thus, we write, the linear momentum equation
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FIG. 3 (color online). Time evolution of perturbed kinetic
energy along 7 [see text] on a log-linear scale for m, = 2 and
I' = 50. The red dashed line shows a fit to the initial linear
growth regime having slope 27y. The vertical dashed line shows
the onset of nonlinear saturation regime at t = 2.82 T which
also coincides with the emergence of the fully developed tripole
(Fig. 1).

for the incompressible dust fluid in the absence of dust-
neutral collisions as [18]

(14 7,0)[0, +v.V)v+ (Ze/ M)V + (1/p)VP]
=vViv+ (1/p)(¢ + 1/3)V(V - V) 3)

where p, v, Ze and P are the mass density, fluid velocity,
charge and pressure of the dust grains, respectively.  and
{ are the coefficients of shear and bulk viscosity, respec-
tively. Kinematic viscosity is given by » = n/p and ¢ is
the electrostatic potential. The viscoelastic relaxation time
7, 1s a measure of how memory effects due to strong
coupling will influence the growth of instability in the
medium. Taking curl of Eq. (3), we get the generalized
hydrodynamic vorticity equation

1+ 7,0)0,0+ (v Vo) =rVo. 4)

Equation (4) can be perturbed by writing velocity and the
vorticity as

v = (v}, Vo + v)), = w)+ o (5)
where the quantities with primes are perturbed quantities.
Using Eq. (5), the linearized z component of Eq. (4)
becomes,

1+ 7,,0)[0, + (Vo/r)dg)e’ + v.Dwy] = vV?e' (6)

Assuming continuity of mass (V - v = 0), we introduce
the stream-function W' = (0,0, V') and write the per-
turbed velocities as v}, = (1/r)dy¥’ and vj = —9, V.
Using Eq. (6) and along with the fact that @’ = —V?>W/,
we get
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FIG. 4 (color online). Growth rate spectrum (solid circles)
of centrifugal instability calculated from MD simulations at
I' = 50. Each point on the curve is obtained from the slope of
the straight line fit to linear growth of the perturbed radial kinetic
energy (Fig. 3). For comparison, the growth rates calculated
from GH model [Eq. (8)] at »(I') = 0.56 and 7,, = 12.

(1 + 7,000, + (Vo/r)ag) V¥ — (1/r) (34 W) D]
= V4, (7

Taking normal mode ansatz: V' = @’ exp(yt + im,0), it
is easily seen that Eq. (7) becomes

(1 + 7, Y[y + im,Vo/r)(D.D = (m,/1)?)
— i(m,/r)Dwo]®’" = v[D.D — (m,/r)?T®" (8)

where D=d/dr and D, =d/dr+ 1/r. Equation (8) is an
eigenvalue equation and can be numerically solved for the
eigenvalue y. Typically, the viscoelastic relaxation time 7,
[19] depends on I' and is given as 7, = [4n/3 + ]/
[B—= Yuy)n + 4u/15] where, Y is the adiabatic index,
which for a 2D system is taken as 2 and w, is the com-
pressibility. Thus, we find the value of 7, = 12 at
I' =50 [18]. In Fig. 4, we show a comparison between
the linear growth rate spectrum of the centrifugal instabil-
ity directly obtained from MD simulations at I' = 50 (solid
circles) and the spectrum obtained from GH model [Eq. (8)
and solid triangles]. We find that for the profile given by
Eq. (2), the GH model (solid triangles) predicts only two
unstable modes namely m, = 2, 3. The GH growth rates
though larger in magnitude appear to be in qualitative
agreement with MD growth rates.

In conclusion, we have demonstrated for the first time,
through large scale MD simulations, the emergence of
isolated coherent tripolar vortices from the decay of un-
stable axisymmetric flows in strongly coupled Yukawa
liquids. Linear growth rates of the instability are directly
obtained from “first principles” MD simulations and
emergence of coherent tripolar vortices in the nonlinear

regime is reported. The tripoles formed are very robust and
persist for several eddy turnover times. An attempt is made
to compare the growth rates obtained from MD simulations
with the GH fluid model. Several important questions can
be addressed in the context of the present paper such as the
enhancement of transport length scales due to these coher-
ent tripolar vortices, inertial power laws and inverse cas-
cade phenomena in 2D turbulent strongly coupled liquids.
Our work expands the possibility of observing such tripolar
vortices in laboratory experiments on complex plasmas,
condensed matter systems and astrophysical systems,
thereby vastly extending the generality of the phenomenon.
We thank Abhijit Sen for discussions.
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