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In this Letter we present results from particle tracking velocimetry and direct numerical simulation that

are congruent with the existence of a laminar superlayer, as proposed in the pioneering work of Corrsin

and Kistler (NACA, Technical Report No. 1244, 1955). We find that the local superlayer velocity is

dominated by a viscous component and its magnitude is comparable to the characteristic velocity of the

smallest scales of motion. This slow viscous process involves a large surface area so that the global rate of

turbulence spreading is set by the largest scales of motion. These findings are important for a better

understanding of mixing of mass and momentum in a variety of flows where thin layers of shear exist.

Examples are boundary layers, clouds, planetary atmospheres, and oceans.
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Sharp and strongly contorted interfaces are known to
exist at the outer boundary of free-shear turbulent flows
such as turbulent jets, wakes, and mixing layers, where
they separate the turbulent from the irrotational ambient
flow regions. These interfaces fluctuate vigorously and are
convoluted by the motion of turbulent eddies, while at the
same time they advance relative to the fluid as a result of
the small-scale entrainment process [1]. For example, in
combustion processes flames are often thin and located at
the turbulence boundary, e.g., [2], so that the behavior of
interfaces affects local rates of mixing of heat and species.
Thin shear layers also play an important role at the bound-
ary of clouds in the atmosphere, where there are sharp
inhomogeneous fronts bounding the turbulent cloud inte-
rior from dry air surrounding it, e.g., [3,4]. They also form
in planetary atmospheres, e.g., so-called ‘‘potential vortic-
ity (PV) staircases’’ on Jupiter [5] and in zonal jets in
Earth’s crust, e.g., [6].

In their pioneering work, Corrsin and Kistler [7] sug-
gested that the interface between turbulent and irrotational
regions is characterized by the existence of a thin layer—
the so-called ‘‘laminar superlayer’’—where viscosity was
inferred to play an important role. In particular, they postu-
lated that the thickness of this layer and its propagation
speed are determined by molecular viscosity � and the rate
of straining of the flow, which is proportional to �=�, where
� ¼ 2�sijsij is the energy dissipation attributed to small-

scale eddies and sij are the components of the fluctuating

rate of strain tensor. This would imply that the process of
transfer of vorticity is due to the smallest scales of motion
and independent of the large-scale motions that convolute
the interface. This idea of statistical independence of large-
and small-scale motions lies at the heart of the theory of
local similarity in turbulence. On dimensional grounds it
follows that the thickness of the interface should be pro-

portional to the Kolmogorov length scale � ¼ ð�3=�Þ1=4,
and its speed of advance, the local entrainment velocity,

should be given by the Kolmogorov velocity u� ¼ ð��Þ1=4,
respectively. The results of recent numerical [8,9] and
experimental [10,11] studies on flows characterized by
significant mean shear showed evidence that the viscous
eddies are indeed important for the spreading of the inter-
face (small-scale ‘‘nibbling’’), but find that the length scale
for the associated average thickness is the Taylor length

scale �� ¼ fu21=ð@u1=@x1Þ2g1=2 rather than �� ¼ ð�3= ��Þ1=4
[8–11], where the overbar denotes the average value.
This was attributed to the thickness of the turbulent-
nonturbulent interface, a layer that is supposed to be con-
taining the laminar superlayer [8]. The influence of mean
shear on the dynamics of this interface is also discussed
based on theoretical and experimental findings in Ref. [11],
where it is argued that the strong mean shear might be
responsible for a larger thickness. In a flow without mean
shear, Holzner et al. [12,13] found that fluid parcels cross a
thin layer characterized by �� within a time characterized

by the Kolmogorov time, ��� ¼ ð�= ��Þ1=2. From these re-

sults the authors indirectly concluded that the character-
istic velocity scale for the local velocity of this layer
relative to the fluid is �u� [13]. On the other hand, it is

well known that, globally, the entrainment rate and the
propagation velocity of the interface relative to the fluid
are independent of viscosity and set by the large-scale flow
parameters only, e.g., [1,14,15] and references therein.
This implies that the small-scale process must somehow
be accelerated through a mechanism that involves a larger
range of eddy sizes [1].
In this Letter we derive an expression for the local

spreading velocity vn, which allows us to test for Corrsin
and Kistler’s postulate in a direct way. The presented
experimental and numerical results underline the impor-
tance of viscous effects for the outward spreading of the
interface and show that velocity and thickness are deter-
mined by the viscous eddies, which are on the order of the
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Kolmogorov velocity and length scale, respectively. We
found that the viscous outward spreading is determined by
the superlayer curvature and the concavity of the vorticity
profile normal to the superlayer, the latter effect being
dominant.

We conducted experiments by using particle tracking
velocimetry (PTV) in scanning mode, a method that allows
measuring the velocity of tracer particles that are passively
advected by the flow based on stereoscopic high speed
imaging [16]. Turbulence is forced by a planar grid [13]
with 4 mmmesh size and 1 mm rod diameter installed near
the upper edge of a water-filled glass tank and oscillating at
a frequency of 6 Hz and an amplitude of 4 mm. When the
grid motion is started, a turbulent flow region develops and
spreads through entrainment of surrounding irrotational
fluid. The size of the observation volume is about
2� 1:5� 1:5 cm3 and is located about 2 cm below the
grid. The number of tracked particles is about 6� 103 per
volume scan at a scanning rate of 50 Hz. The trajectories
were processed to calculate the three components of the
velocity ui, Lagrangian acceleration ai, and their gradients
[13]. The Reynolds number is Re ’ 1000 corresponding to
a Taylor microscale Reynolds number Re� ’ 50 and the
results are compared to a numerical simulation at the same
Reynolds number. Direct numerical simulations (DNSs)
were performed in a box of fluid initially at rest [13]
with Re ¼ ð1–4Þ � 103. Random (in space and time) ve-
locity perturbations are applied at the boundary x2 ¼ 0.
The Navier-Stokes equations are solved with a finite dif-
ferences scheme and with time advancement computed by
a semi-implicit Runge-Kutta method. The resolution is
256� 256� 256 grid points in x1, x2, and x3 direction.

In both experiment and simulation, the turbulence
boundary is detected by using a threshold on enstrophy
!2 ¼ ! �!, where ! is the vorticity vector, e.g.,
[8,10,12]. The selected value of the threshold is 5% of
the mean enstrophy in the turbulent region. Figure 1 shows
a snapshot of the isosurface obtained from DNS, and it can

be seen that the convoluted surface is characterized by
rather smooth bulges with sharper ridges in between.
When considering the evolution of this isosurface in
time, it is convenient to separate between the advection
due to the underlying flow field and its velocity relative
to the fluid. We write the velocity of an isosurface ele-
ment, us, as a sum of fluid velocity, u, and velocity of the
area element relative to the fluid, V ¼ vnn̂, that is, u

s ¼
uþ V, where n̂ ¼ r!2=jr!2j is the surface normal and
vn is the normal velocity component. By definition the
total change of !2 in the frame of reference moving with
an enstrophy isosurface element will be zero, and this is
used in the following to derive a relation for the propaga-
tion velocity:

Ds!2

Dst
¼ @!2

@t
þ usj

@!2

@xj
¼ @!2

@t
þ ðuj þ VjÞ@!

2

@xj
¼ 0:

(1)

The isosurface will hence evolve according to the relation

@!2

@t
þ uj

@!2

@xj
¼ �Vj

@!2

@xj
¼ �vnjr!2j: (2)

With the use of the enstrophy transport equation,

@!2=2

@t
þ uj

@!2=2

@xj
¼ !i!jsij þ �!ir2!i; (3)

we obtain a relation for vn, written as a sum of an inviscid
and a viscous contribution:

vn ¼ � 2!i!jsij

jr!2j � 2�!ir2!i

jr!2j ¼ vinv
n þ vvis

n : (4)

A snapshot of the distribution of vn normalized by �u�,

where the overbar denotes the average over the locations of
the isosurface, is shown in Fig. 1. The probability density
functions (PDFs) of vinv

n , vvis
n and vn evaluated at the

isosurface locations are depicted in Fig. 2, and it appears
that all distributions have a negative skewness. A negative
velocity points towards the irrotational region; i.e., the
turbulent region expands. The figure shows that the invis-
cid contribution is small and vn is dominated by the
viscous term. Both the mean values and the standard
deviations of vn are close to �u�. Experiment and simula-

tion show good qualitative agreement, where the PDF of
vinv
n from the experiment displays a somewhat higher

skewness compared to the respective curve from DNS
(Fig. 2). The qualitative trends do not change for a wide
range of isovalues in the numerics; in the experiment only
one decade, ð0:01-0:1Þh!2i, could be tested due to the
influence of noise at very low values [12]. From the nu-
merical data we calculated the balance between global and
integral volume flux, e.g., [9,17,18]. The ratio between the
volume flux, Q ¼ R

vndA, integrated over the convoluted
area of the isosurface and the global value, Q0 ¼ ueA0, is
shown in the inset of Fig. 2 for different thresholds and

FIG. 1 (color online). Snapshot of the propagation velocity vn

normalized by �u� rendered over an enstrophy isosurface from

DNS at Re� ¼ 50.
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yields 1� 0:07, where A0 ¼ 25L2 is the cross-sectional
area of the computational domain, ue ¼ dHðtÞ=dt is the
entrainment velocity, and HðtÞ is the cross-sectional
average of the isosurface positions at time t. This shows
that the turbulent flow strongly deforms the superlayer to
account for the same volume flux with a large surface area
and a small characteristic velocity. Given that the viscous
term dominates vn it is natural to define the associated
local length scale as � ¼ �=vn, and this yields values for
the superlayer thickness close to ��. The prediction of [7]

would imply that ��= �� ’ const and ��= �� / Re�1=4. In con-

trast, if �� / ��, then ��= �� / Re1=4 and ��= �� ¼ const.
Simulations up to Re ¼ 4000 show that ��= �� is rather close
to a horizontal trend, i.e., ��= �� ’ const and does not follow

Re1=4, and, analogously, the ratio ��= �� does not show a

horizontal trend and is rather close to Re�1=4 (Fig. 3). We
have hence identified a viscous superlayer, where viscosity
is mostly responsible for the local advancement relative to
the fluid and towards the irrotational ambient flow, as

postulated in [7]. In Fig. 4 (top, left) we plot the PDF of
the cosine of the angle between ! and the isosurface
normal n̂. Since vortex lines cannot end in the irrotational
region, the vorticity component normal to the surface must
vanish at the superlayer, so that the vorticity vector is
oriented tangentially and the value of the cosine is con-
centrated at zero. Consistent with the negative skewness of
the PDF of vinv

n shown in Fig. 2, straining motion is mostly
stretching the vorticity at the superlayer [12] and the
intermediate eigenvector �2 of the rate of strain tensor is
mostly oriented tangentially, while the compressive eigen-
vector �3 is mostly oriented normally to the laminar super-
layer, respectively (Fig. 4 top, right). Predominant vortex
stretching thus appears to be one of the reasons why the
turbulence boundary remains sharp despite the fact that
viscosity keeps diffusing it. Figure 4 depicts joint PDFs of
the spreading velocity vn and the local Kolmogorov ve-
locity u� obtained from DNS (bottom, left) and PTV

(bottom, right). The isoprobability contours are not aligned
with the diagonal, which implies that there is no pointwise
correlation between the two quantities and the local simi-
larity hypothesis does not hold. This poses the question of
what determines then the local viscous spreading velocity
towards the irrotational flow region.
It is useful to decompose the term �!ir2!i into the sum

of the divergence of a flux term �r � ðr!2=2Þ (viscous
diffusion of enstrophy) and a purely negative term��r!i:
r!i (viscous destruction of enstrophy), e.g., [14], which
yields

vvis
n ¼ ��r � ðr!2Þ

jr!2j þ 2�r!i:r!i

jr!2j : (5)

FIG. 3 (color online). Mean superlayer thickness �� normalized
with �� (�) and �� (5) as a function of Reynolds number on
linear (left) and logarithmic axes (right). The dashed lines show
the slopes Re0 and Re�1=4, DNS only.

FIG. 4 (color online). Top: PDF of the cosine of the angle
between vorticity and the surface normal (left) and PDF of the
absolute value of the cosine of the angle between the eigenvec-
tors of the rate of strain tensor and the surface normal (right),
(solid red line, �) i ¼ 1, (dashed green line, h) i ¼ 2, (dash-
dotted blue line, 5) i ¼ 3. Lines are from DNS, symbols from
PTV. Bottom: Joint PDF of vn versus the local Kolmogorov
velocity from DNS (left) and PTV (right). The scale of the color
bars is logarithmic.

FIG. 2 (color online). PDFs of the inviscid (solid red line, 5),
viscous (dashed green line, h) and total (dash-dotted blue line,
�) propagation velocity. Lines are from DNS, symbols from
PTV. The inset shows the ratio between the integrated and global
volume flux for different threshold values c!2 normalized with
the mean enstrophy in the turbulent region (DNS only).
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Operating on the first term one obtains

vvis
n ¼ ��ðr � n̂Þ � �n̂ � rðjr!2jÞ

jr!2j þ 2�r!i:r!i

jr!2j ; (6)

and, with xn denoting the coordinate normal to the super-
layer, finally we get

vvis
n ¼ ��ðr � n̂Þ � �ð@2!2=@x2nÞ

@!2=@xn
þ 2�r!i:r!i

jr!2j : (7)

The last term on the right-hand side is always positive and
does not contribute to the outward spreading of the super-
layer. The first term is the velocity induced by the curvature
of the superlayer, since the mean curvature is defined
as Hm ¼ r � n̂=2. Parts of the superlayer (r � n̂> 0) con-
vex towards n̂ contribute to the outward velocity. The
second term of Eq. (7) involves the one-dimensional local
profile of !2ðxnÞ normal to the superlayer. A concave
profile (approaching zero asymptotically) will contribute
to the outward spreading. We refer to the term Hn ¼
ð@2!2=@x2nÞ=ð@!2=@xnÞ as normal diffusion term.
Figure 5 shows PDFs of the mean curvature and normal
diffusion term normalized with the Kolmogorov length
scale. The mean curvature Hm has a pronounced positive
tail, which is mostly related to sharp ridges between
bulges, whereas its median is about �0:02 ���1, which
corresponds to a curvature radius on the order L, and
identifies smooth outward facing bulges as a dominant
shape. The positive tail implies that the superlayer is
strongly deformed and sharp ridges can contribute signifi-
cantly to the outwards propagation velocity and counteract
Hn < 0 events. The contribution from the normal diffusion
term, however, has typically higher positive values thanHm

(Fig. 5). We thus conclude that the viscous outward spread-
ing velocity originates mostly from the concavity of the
local enstrophy profile normal to the superlayer, while the
effect of the curvature of the superlayer is typically smaller.
Analogously, the characteristic thickness � is mostly given
by H�1

n .
In summary, we measured that the local superlayer

velocity, vn, is on the order of the smallest velocity scale

of the flow, namely, the Kolmogorov velocity, �u�, and its

thickness is on the order of ��. On the other hand, globally,
the interface propagates with a velocity that is independent
of the viscosity and on the order of the integral velocity
scale [18]. We reconcile the two at first conflicting findings
by showing that the superlayer area is strongly deformed
by the turbulent eddies to account for the same global
entrainment flux with a small characteristic velocity. The
deformation of the superlayer results in strong mean cur-
vature which is one driving factor for the outward spread-
ing of turbulence. The dominant effect is the concavity of
the local enstrophy profile normal to the superlayer. The
weak pointwise correspondence between vn and u� inva-

lidates the local similarity principle.
The results have implications for models which use

similarity arguments [19] and make simplifying assump-
tions about the shape of the superlayer, which range from
being flat [20] over simple shapes [19] to fractal geome-
tries [17].
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