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Bubbles confined in microchannels self-organize without directly contacting one another when excited

by an external acoustic field. The bubbles tend to form periodic ‘‘crystal’’-like lattices with a finite

interbubble distance. This equilibrium distance can be adjusted by simply tuning the acoustic frequency.

This new type of crystal is purely mediated by acoustic surface waves emitted by the pulsating bubbles.

Because these waves are reflected at the channel boundaries, the bubbles interact with their own images

across the boundary.
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Introduction.—Although acoustic waves are well known
as convenient tools to passively probe materials, they can
also lead to acoustic forces that can actively translate
objects embedded in a fluid medium. Compared to other
objects such as solid particles or droplets, a bubble in a
liquid has a strong vibrational response to acoustic waves
because its gas content is much more compressible. Since
its volume pulsates significantly [1], a bubble efficiently
scatters ultrasound waves and becomes a secondary sound
emitter. When undergoing this oscillation, the bubble is
subjected to a strong force from incoming acoustic waves
called the primary acoustic Bjerknes force [2]. The bubble
may also experience a secondary Bjerknes force from
neighboring bubbles. These forces are at play in numerous
acoustic applications, such as in medical ultrasonics,
acoustic degassing, multibubble cavitation and sonolumi-
nescence [1].

Bubbles of the same size experience an attractive inter-
action at long distances, as observed and predicted
by a simple model [3,4]. However, a singular observation
showed that they agglomerate but do not necessarily co-
alesce: these ‘‘bubble grapes’’ were first described by [5].
This report (confirmed by [6,7]) suggested that bubbles
could be maintained without contact at a small, finite
separation distance, even if no value was measured.
This finding in turn triggered many theoretical approaches
that predicted a repulsive interaction at short distances and,
therefore, a finite equilibrium distance [1,8–13]. These
hypotheses have not been confirmed by experiments.

Here, we show that the interaction between bubbles
can indeed present a marked short-range repulsion and
therefore a finite equilibrium distance when bubbles are
confined in microchannels: bubbles self-organize into
‘‘acoustically bound crystals’’ with purely acoustic inter-
actions. This interaction is dominant over hydrodynamic
effects [14].

The physical system we introduce appears as an inter-
esting model system in the context of complex systems.
Bubbles are simple objects and are coupled to any incident
external field from which they can obtain mechanical

energy. As a secondary effect, bubbles are acoustically
coupled to their neighbors, which provides the basis of
the interactions in this multiagent system.
Results.—We designed a microfluidic planar setup for

the purpose of studying microscopic bubbles (Fig. 1). The
bubbles, 20–50 micrometers in radius, were generated by a
flow-focusing geometry [15], which facilitates the produc-
tion of bubbles with extremely reproducible sizes [15,16]
that depend only on the applied gas pressure and the liquid
flow rate. A surfactant was added to the liquid to prevent
bubble coalescence. The bubbles were confined in chan-
nels made entirely of a polydimethylsiloxane (PDMS)
elastomer using standard soft lithography techniques
[17]. The channels were shallow (h ¼ 25 �m in depth),
and the bubbles were therefore in contact with the trans-
parent top and bottom surfaces; this contact was lubricated
by a thin liquid film. An acoustic field was applied locally
through an intermediate—a rectangular glass rod that
was molded in the elastomer just above the channel
(145 �m away). The rod was vibrated by a piezoelectric
element glued onto it. The channel therefore received the
ultrasound field emitted by the rod through the elastomer,
which transmitted the vibration.

FIG. 1 (color online). The microfluidic setup. The liquid is
sketched in blue (dark gray), the gas in white and the vibrating
glass rod in light gray (molded above the channel). Bubbles
are produced in the flow-focusing section and then flow into a
large channel where sound is applied locally via the vibration of
the rod.
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For a sufficient acoustic amplitude, we observed that
the bubbles, which were initially in a line after the flow-
focusing generator, spontaneously self-organized in a bal-
letlike motion while keeping an equilibrium distance. The
bubbles finally arranged themselves into regular hexagonal
patterns, and an ’’acoustically bound crystal’’ was created
(Fig. 2). This crystal was not stationary but was advected
by the flow (movie 1 in Ref. [18]). The bubble positions
were therefore not imposed by the standing external field
(as in a Kundt tube or a resonant cavity [19]) but instead
plainly resulted from their mutual interactions.

This crystal was tunable: the distance between the bub-
bles could be adjusted by switching the acoustic frequency
(Fig. 3). Surprisingly, this distance did not depend on the
bubble size or on the acoustic amplitude (insert in Fig. 3).

For large initial bubble densities, aggregates of several
contacting bubbles were seen [Fig. 2(c)]. These aggregates
also arranged themselves into a crystalline order with an
equilibrium distance that is comparable to crystals made of
single bubbles.

At large acoustic amplitudes, the bubble surface dis-
played undulations [Fig. 2(b)]. A parametric instability,
the Faraday instability [20], occurred, which led to stand-
ing waves on each bubble’s surface. We observed between
three and ten wavelengths of undulation around the pe-
rimeter, depending on the bubble’s apparent diameter.
These values are close to the predictions by Lamb
[21–23] for spherical bubbles (movies 2–4 and Fig. 1 in
Ref. [18]). Nonetheless, the appearance of these ‘‘gear-
like’’ bubbles did not affect the crystal organization.

Model.—Despite the lack of experimental proof
available, intense theoretical efforts that have predicted
short-range repulsion forces can be found in the literature.
However, none of these studies predict an equilibrium
distance that is independent of the bubble radius and
the oscillation amplitude. These models can be classified
under four different types of assumptions. (i) The bubbles
act as coupled oscillators at small distances [8]. This model
predicts a decrease in the resonance frequency when two
bubbles get close to each other, and it identifies a repulsion
force at short distances, but only for bubbles of different
sizes. (ii) Interference arises between the acoustic pres-
sures emitted by the bubbles and the primary sound
field [1,9]. This theory predicts an equilibrium at small
distances that strongly depends on the bubble size (which
determines the phase of the bubble oscillation). (iii) The
bubble oscillation is nonlinear [10–12]. A repulsive inter-
action only occurs at very large pulsation amplitudes.
(iv) The bubbles emit acoustic waves that propagate
with a finite wavelength in the bulk [13]. This model
predicts an equilibrium distance on the order of the wave-
length of sound, which is much larger than the one we
observed. In addition, acoustic streaming forces are not
expected to play a role because of the spherical pulsation
of bubbles, without any translation (contrary to particles
in [24]).
To interpret our observations, we derived a new model

based on the fact that vibrating bubbles also emit surface
acoustic waves in addition to bulk waves. In our setup,
the channel walls were made of soft elastomeric PDMS so
that the bubble vibration could drive two-dimensional
surface Rayleigh waves [25] [Fig. 4(a)]. These secondary
waves propagate from each bubble. We started by assum-
ing that all bubble volumes pulsate in phase according to
V ¼ V0½1þ " cosð!tÞ�, where " is the relative amplitude
of vibration and ! ¼ 2�f. The pressure in the liquid due

0 50 100 150 200 250
0

100

200

300

400

f (kHz)

d 
(µ

m
)

R=20 30 µm
R=30 40 µm
R=40 50 µm

40 70 100
0

150

300

A(V)

d(µm)

FIG. 3 (color online). The interbubble distance and its varia-
tion with the frequency and the excitation voltage of the ultra-
sound transducer (insert) for different bubble sizes. The line is a
fit to d ¼ c=f, with c ¼ 33 m=s. Error bars represent the stan-
dard deviation over several measurements.

FIG. 2 (color online). Experimental snapshots showing
acoustically bound flowing crystals, with bubbles whose
radii are around 25 �m. (a) Periodic triangular arrays after
self-organization. The equilibrium distance is 340 �m
(f ¼ 87 kHz). (b) Effect of the channel boundaries (thin hori-
zontal lines): the bubble tend to be attracted at a distance that is
half the crystal distance d (f ¼ 126 kHz). (c) Bubbles can form
aggregates at nodes of the periodic array (f ¼ 90 kHz). In all of
the pictures, the area under the rectangular glass rod is located to
the right of the vertical line. The bubbles flow from left to right.
The scale bar is 250 �m in all images.
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to the surface wave in the fluid is P2 ¼ �P2;0ðR0=rÞ1=2
cosð!t� kRrÞ, where r is the distance from the bubble’s
center, R0 is the bubble’s radius at rest, kR ¼ 2�=�R is the
Rayleigh wave number, and P2;0 is the liquid pressure

emitted by the bubble. The order of magnitude for the
pressure in the liquid is easy to estimate [26]. Because
the surface wave velocity in PDMS is much smaller than
the sound velocity in the liquid (as we will discuss below),
there is no sound emission in the liquid, but only an
evanescent pressure field above the surface on a layer of
typical thickness �R [25,27]. This original situation con-
trasts with that of hard solid materials such as silicon,
which has a surface wave velocity higher than the liquid,
leading to radiative losses or ‘‘leaky waves.’’ Note that
more rigid solid polymers (such as PMMA), also present a
surface wave velocity lower than sound, but to a lesser
extent [28]. Here, we do not take into account the interac-
tion between the top and bottom surface vibrations, and
assume that the evanescent pressure in the liquid is
homogeneous in the channel gap (since its height is small
compared to the wavelength). The secondary acoustic
Bjerknes force is simply the time average of the evanescent
pressure forces on a neighboring bubble at a distance
r: FB ¼ h�VðtÞrP2ðt; rÞi. Using the expressions for the
volume and the pressure, we find that the acoustic Bjerknes
force is aligned with the bubble centers, and its amplitude
derives from a potential:

FBðrÞ ¼ �@�B

@r
with �B ¼ � 1

2
"V0P2;0

ffiffiffiffiffiffi

R0

r

s

cosðkRrÞ:
(1)

This potential is plotted in Fig. 4(b), while the force is
plotted in Fig. 4(c). The interaction is attractive at small
distances, as reported in the literature. This interaction
predicts agglomerated bubble clusters. However, the
potential oscillates with the distance, which remarkably
produces equilibrium positions at finite distances. The
first minimum occurs at one wavelength r ¼ �R, which
accounts for the distance that is experimentally observed.
There are secondary minima at distances that are multiples
of �R, but they are less remarkable because they are
situated in shallower wells of the potential. Following
this model, the wavelength, and consequently the equilib-
rium distance, depend only on the frequency through the
relationship d ¼ �R ¼ cR=f, where cR is the velocity of
the surface waves.
Discussion.—The observed equilibrium distances are

qualitatively and quantitatively compatible with the wave-
length just introduced. The measurements are described
by d ’ c=f, with c ¼ 33 m=s. This velocity for surface
waves, which is much smaller than the velocity of sound in
liquid (around 1500 m=s), is in good agreement with the
material stiffness of the walls. A velocity of cR ¼ 33 m=s
was computed for a Young’s modulus of 3.3 MPa [29],
which is well within the range of static values measured
for PDMS, namely, 0.8–4 MPa [30], depending on the age
and curing time of the elastomer.
One may also wonder if 3D crystals could be observed in

bulk water. We believe this would be difficult because the
Bjerknes interaction would be much weaker. The propa-
gating pressure emitted by a pulsating bubble decays

as r�1 in 3D, which is faster than the r�1=2 decay in 2D.
The wavelength of bulk waves is also much larger (about
50 times). The project would therefore require extremely
high amplitude oscillations—so high, in fact, that the
stability of the bubble would no longer be warranted.
Moreover, the shape of the potential itself can be re-

trieved through force measurements. Because of the neg-
ligible inertia in the translational motion of bubbles at
these tiny scales, friction forces exactly balance the force
acting on the bubbles. The friction force is inferred from
the measured velocity vector: The friction force of a con-
fined bubble of velocity v is mainly due to friction with the
walls and may be expressed as Ff ¼ �ðvÞ�hv, with � the

fluid viscosity. The friction coefficient � decreases with
velocity because faster bubbles are lubricated by thicker

films. We calibrated �ðvÞ ’ 11ðh=RÞ3=2ð�v=�Þ�1=2 in the
presence of surfactant [31], with � the surface tension of
fluid (’ 30 mN=m). The acting forces on a bubble’s
trajectory during assembly or during aggregation are dis-
played in Fig. 4(c). In this particular experiment, we found
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FIG. 4 (color online). (a) A cartoon showing the secondary
emission of surface waves, as seen from the side. The PDMS
walls are in grey, while the liquid-filled channel is in blue (dark
grey). The surface waves reflect on the side boundaries, here on
the right boundary. Surfaces waves are of the Rayleigh type
when �R is much smaller than the wall thickness [25], a
condition that is always fulfilled for the millimeter-thick bottom
wall, and only at high frequency for the 145 �m-thick top wall.
(b) The acoustic interaction potential from Eq. (1). (c) The force
deriving from this potential (line) and measured from the ap-
proach velocity between two bubbles: circles represent crystal
assembly, and squares represent aggregation. Same conditions at
f ¼ 155 kHz. Error bars represent uncertainty. The parameters
for the predicted interaction are � ¼ 226 �m and vibration
amplitude " ¼ 0:059.
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from Eq. (1) and from the estimation of P2;0 that the

vibration amplitude is indeed small: " ¼ 5:9� 10�2.
The model of surface waves is further supported by

the fact that the bubbles also interacted with the side
boundaries of the channel. It was observed that they kept
a distance from the boundary that was equal to about half
the distance between the bubbles [Fig. 2(b)], or the bubbles
squarely contact the wall. This interaction can be explained
by the fact that surface waves are reflected by the bounda-
ries, and after reflection are equivalent to those emitted
by ‘‘image’’ bubbles, placed symmetrically on the other
side of the boundary. Bubbles therefore interact with their
images, which produces this ‘‘Narcissus’’ effect [32].

Conclusion.—The self-organization we report, based on
a wave-particle duality, shares common features with the
bouncing of liquid drops at the surface of a vibrating liquid
[33]. However, there are two main qualitative differences:
the first is that the bubble interaction does not use gravity,
and the second is that the excitation amplitude is small,
with no clear critical amplitude.

Our understanding of bubble organization allows us to
envision the fabrication of bubble arrangements at a micro-
metric size. The generation of ‘‘crystal on demand’’ opens
promising perspectives for creating adaptive phononic ar-
rays, tuned by the excitation frequency. In the same spirit,
the control of periodically arranged voids would be inter-
esting as templates to synthesize new materials.
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