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Radiation of Caustic Beams from a Collapsing Bullet
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We show both theoretically and experimentally that a collapsing (2 + 1)-dimensional wave packet in a
medium with cubic nonlinearity and a two-dimensional dispersion of an order higher than parabolic
irradiates untrapped dispersive waves. The studies are performed for a spin-wave bullet propagating in an
in-plane magnetized ferrimagnetic film. An induced uniaxial anisotropy in such a medium leads to the
formation of narrow spin-wave caustic beams whose angles to the bullet’s propagation direction are

modified by the motion of the source.
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Solitons while perturbed are able to emit small-
amplitude radiation with frequency detuned far from the
soliton frequency [1-3]. This ability, generally recognized
as striking evidence of the soliton’s wave nature [4], has
gained dramatically in importance in recent years with the
discovery of supercontinuum generation in photonic crys-
tal fibers whose applications for frequency comb genera-
tion in metrology, spectroscopy, and imaging are more than
just impressive (see, e.g., [5]). It was shown that dispersion
radiation from solitons is responsible for a major spectral
part of the supercontinuum (see, e.g., [4,0]).

One has to note that small-amplitude radiation from
solitons is possible, provided the dispersion relation for
the medium deviates from the parabolic law w(k) = wq +
v(k — ko) + D/2(k — ky)*> built into the standard (i.e.,
parabolic) cubic nonlinear Schrodinger equation (CNSE),
which governs envelope solitons in optical fibers [7], deep-
water solitons [8], and spin-wave envelope solitons in
magnetic films [9]:

2
ga + iwga + va—a — iQ 8_c21 + iN|al*a = 0.
at 0z 2 9z
Here a is the envelope function for the propagating wave
packet, z is the direction of propagation, and N is the
nonlinear coefficient (the term iN|a|?a is called “cubic
nonlinearity’” and gives rise to the equation name).

The dispersion law is expressed as a series expansion
of the frequency w in terms of the wave number k of plane
linear waves supported by the medium. The sign of the
second-order dispersion coefficient D = 9?w(k)/dk? is of
paramount importance for soliton formation: Solitons are
formed provided DN < 0.

Karpman [10] theoretically predicted that in the same
CNSE framework the fourth-order two-dimensional
(2D) dispersion w(ky, k;) with a set of coefficients of
proper signs should lead to wave irradiation from
(2 + 1)-dimensional wave packets a(x, y,t) as well. He
considered an axially symmetric wave packet in an iso-
tropic medium. In his work and in subsequent numerical
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simulations [11], it was shown that a localized (2 + 1)D
wave packet is destroyed by radiating energy into a non-
trapped circular wave.

To the best of our knowledge, this radiation has not been
observed so far. Interestingly, a similar effect of conical
Cherenkov radiation from optical bullets in an axially
symmetrical 3D geometry [12] has attracted a lot of atten-
tion [13]. The conical radiation does not originate from
a dispersion of a higher order but from a higher-order
nonlinearity (we will call a dispersion relation containing
term of orders higher than parabolic “‘higher-order disper-
sion’’). Thus, it can be characterized as an effect ““dual” to
the one Karpman predicted.

In this work, we experimentally demonstrate the non-
trapped radiation from a collapsing bullet originating from
the higher-order dispersion. This phenomenon is observed
for a spin-wave bullet propagating in a thin magnetic film.
Furthermore, we observe two extra features which were
not included in the original theory [10]. (i) We find that
in a medium with uniaxial anisotropy this radiation takes
the form of two narrow-aperture beams, and (ii) as the
medium is characterized by a dispersion of backward type,
the radiation is in the backward direction with respect
to the bullet propagation direction. This is in contrast to
Cherenkov conical radiation, which is forward [12].

Stable (2 + 1)D localized nonlinear spin-wave excita-
tions, termed spin-wave bullets, have been previously ob-
served in thin ferrimagnetic films of yttrium iron-garnet
(YIG) magnetized along the propagation direction
[14—17]. The waves propagating along the field are called
backward volume magnetostatic spin waves. They are
waves of backward nature, which means that their group
velocity and wave vector point in opposite directions.

Two-dimensional pulses are intrinsically unstable and
undergo nonlinear narrowing leading to collapse as
nonlinearity overcompensates linear broadening due to
2D parabolic dispersion. Weak magnetic losses in a real
magnetic film may balance the nonlinear narrowing.
This results in a quasi-2D spatially localized bell-shaped
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waveform called a bullet and ensures its stability for some
distance of propagation [14]. This regime is well described
by the (2 + 1)D parabolic CNSE. The stable bullets are
observed in a certain range of initial powers for the wave
packets. For larger input powers, waveform collapse is
unavoidable [14]. The advanced stage of the collapse is
beyond the limits of applicability of the parabolic CNSE,
and the specific scenario for destruction of the collapsing
wave packet should be governed by processes of higher
order.

Our experiment is carried out by using a longitudinally
magnetized YIG film stripe which is 2.5 mm wide
(w = 2.5 mm) and 5 um thick. The magnetizing field H
is 1831 Oe. The spin waves are excited by a rf magnetic
field created with a 25 um wide microstrip antenna placed
across the stripe and driven by 20 ns long microwave
current pulses at a carrier frequency of 7.125 GHz. The
spatiotemporal behavior of the traveling spin-wave
packets is probed by means of space- and time-resolved
Brillouin light scattering spectroscopy [18]. For relatively
small input powers we observe formation of quasistable
(2 + 1)D wave packets—guided spin-wave bullets (Fig. 1,
upper row)—reported previously for the same geometry
[17]. If we increase the power beyond the range of bullet
stability, the wave packet collapses (Fig. 1, lower row). The
most prominent feature of the collapse is the pair of rays
irradiated from the packet in the backward direction
(second panel in the lower row of Fig. 1). The left panel
in Fig. 2 gives a detailed view of the beam emission. One
clearly sees that the rays have narrow apertures and are
directed at well defined angles to the longitudinal axis of
the ferromagnetic stripe: The value of the angle between
the rays is 64°.

In order to reveal the origins of the irradiation we carry
out numerical simulations. An original reciprocal-space
approach is used which effectively accounts for all
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FIG. 1. Snapshots of spin-wave packets measured at different
input powers and at 50 ns time intervals. Arrows show the bullet
propagation direction. It coincides with the direction of the bias
magnetic field H and the coordinate axis z.

dispersion orders of the real spin-wave dispersion
[17,19]. In the reciprocal space CNSE takes the form of
a system of coupled equations for the amplitudes of the
wave packet’s spatial Fourier components:

. aFn,k(a)
o
+ NFn,k(lalza) = fn,k(t)! (1)

+ (wn,k +il" = wO)Fn,k(a)

where a = a(y, z, t) is the spin-wave scalar amplitude and

1 /2 0 .
F,i(a) = — fw sin(m>dyf ae *k2dz
’ 2aw J—w)2 w o

denotes a 2D Fourier transform which is continuous along
the stripe (k, takes continuous values in the model)
and discrete in the transverse direction (k, = n7/w, n =
1,2,3,...). This term is responsible for nonlinear coupling
of Fourier components with different values of n and k,. I
denotes the coefficient of spin-wave linear damping for
the medium, and f, () is the Fourier transform of the
time envelope of the driving microwave field which excites
the spin-wave packet at the entrance into the waveguide
medium. Similar to the experiment, f,;(¢) is taken in
the form of a 20 ns long rectangular pulse. The carrier
frequency of this driving pulse is w,/27 (see Fig. 3).

The term w,; = w(ky, k;) is the 2D spectrum of spin
waves, shown in Fig. 3 as k, dependence of frequency for
a family of different discrete values of ky, which we take
here equal to n7r/w. The calculated dispersion corresponds
to the conditions of our experiment. Physically, this (n, k)
representation describes a family of guided modes for a
film waveguide. The transverse (y) profiles of the width
modes are given by sin(nwy/w) with n indicating each
particular mode. One sees that the dispersion slope
dw, /0lk.| is negative for all the modes. This reflects
the fact that the modes are of the backward type.
Consequently, a localized wave packet which propagates
in the positive direction of the axis z has a carrier wave
number k, <0.

As previously shown for both 1D [2] and isotropic 2D
media [10], to ensure radiation from nonlinear waveforms
it is important to have a dispersion law for a medium which
contains terms higher than parabolic. More precisely, the
curvature 9°w/dk> should change sign along the disper-
sion curve. From Fig. 3, one sees that, on one hand, for

FIG. 2. Irradiation of caustic beams from the collapsing bullet.
Left panel: Experiment. Right panel: Simulation.
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FIG. 3 (color online). Spectrum of the guided modes for the
longitudinally magnetized film waveguide. The calculation as-
sumes pinned spins at the stripe edges. The family of symmetric
modes n = 1,3, ..., 65 is shown. The mode which is the lowest
in frequency is the fundamental width mode for the waveguide
n = 1. Inset: A section of the spectrum close to the frequency
@p/2r. The horizontal blue dashed lines in the main field of the
figure and in the inset show the carrier frequency wq/27 of
the input microwave pulse. The oblique red lines show the
Doppler-shifted frequencies of an excitation source which moves
in the positive direction. The bold sections of these lines show
the modes responsible for formation of the respective caustics.

each particular width mode the sign of 9*w,, ;/9k? changes
from negative to positive in the vicinity of k, = 0. On
the other hand, the spectrum in Fig. 3 is quite dense.
Considering this spectrum as quasicontinuous one retrieves
the 2D continuous dispersion of plane spin waves in
ferromagnetic films [20] which is characterized by the
variation of dispersion sign d’w/dk*> as a function of
the propagation angle with respect to the direction of the
applied field H [k* = k2 + k2, ¢ = arctan(k,/k,)].

Our simulations confirm the validity of Karpman’s idea
that the higher-order dispersion alone may give rise to a
nontrapped radiation from a collapsing bullet. The result is
shown in Fig. 2. One sees good agreement with the experi-
ment. In particular, we obtain the same radiation angle of
64° as in the experiment.

Waves excited by an immobile point source in the
medium with the dispersion shown in Fig. 3 are prone to
forming caustics [21]. It is appropriate here to give a short
introduction to the phenomenon of caustics. In an aniso-
tropic medium with a dispersion law w(k), the direction
of the wave group velocity v, = dw(k)/0k indicating the
direction of energy flow does not, in general, coincide with
the direction of the wave vector k. When the medium
anisotropy is sufficiently strong, the direction of the group
velocity of the waves in the vicinity of a certain wave
vector k. may become practically independent of their
wave vectors. In this case the energy of the waves is
channeled along this specific direction, which is called
the caustic direction, and forms a so-called caustic beam.
In our recent work [21] we demonstrated this phenomenon

for spin waves in a single crystal YIG film by using a
quasipoint excitation source whose diameter d was smaller
than 277/k,. In this medium magnetocrystalline anisotropy
is negligible; application of an external static field H in
the film plane imposes a uniaxial symmetry necessary for
the formation of caustics. Two pairs of spin-wave caustic
beams are directed at specific angles with H [14,21-25].

One notices that a collapsing spin-wave bullet in a
magnetically saturated ferromagnetic film meets the size
criterion d < 27 /k, for a quasipoint source of linear exci-
tation of caustic waves. Such a source located on the axis
of the waveguide will excite all waveguide modes which
have an antinode on the axis. These are the symmetric
modes n = 1, 3,5, .... For an immobile linear source, the
frequency of the excited waves is equal to the frequency
of the source. This condition is indicated by the dashed
horizontal line in Fig. 3: All the symmetric modes whose
dispersion lines cross the dashed line will be excited with
the frequency given by the ordinate of the point of the cross
section. It is a short exercise [22] to find which of the
modes are responsible for caustic formation: Those modes
are shown by the bold part of the dashed horizontal line.
For the conditions of our current experiment, the angle ¢,
between the beams in each caustic pair should amount
to 84° as our calculation based on the theory in Ref. [23]
shows. Note that this value is significantly different from
the angle seen in Fig. 2.

This disagreement is caused by the motion of the bullet
with the velocity v = 2.5 cm/us. The moving source is
described by the red oblique line w = wy + vk,, which
can be considered as the time-space Fourier transform of
the moving point source [see, e.g., Eq. (14) in [26]]. The
term vk, is obviously the Doppler frequency shift for the
excited modes. One sees that now each mode is excited
with its own frequency. Furthermore, one sees that cross-
ings are possible only for positive k, values. Importantly,
our calculations show that, similar to the previous case of
the immobile source, the modes which satisfy the Doppler
shift condition w,, ;(k,) = w, + vk, are also able to form
caustic beams. The family of modes which are found to
be responsible for formation of the modified caustics is
shown by the bold section of the red oblique line.

The modified caustic angles are obtained by considering
the family of slowness curves for the Doppler-shifted
frequencies. A slowness curve is a constant-frequency
line in the (k,, k;) plane [Fig. 4(a)] calculated for a film
which is continuous in both in-plane directions [23]. The
group velocities of all plane waves which exist at the
respective frequency are directed perpendicular to this
curve. For this reason the direction of the energy flow
(DEF) [23] is given by the normal to the slowness curve
at the point where its curvature is zero. A range of fre-
quencies for which the slowness directions are close to
each other will contribute to formation of the modified
caustics. The thin solid lines in Fig. 4 are the slowness
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FIG. 4 (color online). Slowness curves for the immobile and
the mobile excitation sources (a) and the respective angles (b). In
(a) bold solid lines are the slowness curves for the frequency
given by the horizontal dashed line in Fig. 3. Thin solid lines are
the slowness curves for the Doppler-shifted frequencies. The red
bold dashed line connects zero-curvature points of the thin solid
lines. Dark blue arrows are normal to the thick solid line and
show the caustic directions for excitation by an immobile source.
Gray arrows are normal to the family of the thin solid lines and
show the DEF for the moving source. In (b) the arrow indicates
the direction of source motion. Thin blue solid lines: Caustic
directions for the immobile source. Red dotted lines: Two DEF
for the moving source. Green dashed lines: Directions along the
observed caustic beams.

directions for the frequencies which correspond to the
crossing points of the oblique red line with the dispersion
lines in Fig. 3. The bold dashed line in Fig. 4 runs across
zeros of curvature for these curves. One sees that normals
to the thin solid lines are collinear. This suggests that the
normals define the DEF directions. The rigorous values for
the angles between these directions and the bullet velocity
are £136.5° [Fig. 4(b)].

First, one sees that the angles exceed 90°, which reflects
the fact that the carrier waves are the waves of backward
nature. (Note that the Doppler frequency shift for back-
ward waves is anomalous [27,28].) Second, one notices
that the angle ¢, = 87° between the two DEF is increased
by just 3° with respect to ¢; = 84°.

Furthermore, for a moving source the directions along
the formed beams do not coincide with the directions of
the energy flow. It is instructive to define DEF via the angle
of group velocity v,. One finds ¢, = 2arctan(|v,, /v,.|).
The direction along a beam is related to the direction of v,
by a Galilean transformation. As a result the angle between
the two backwards-irradiated beams is given by 2 arctan
(lvgyl/lvg, — vl). Using this formula, one obtains a value
of 64°, which is in the excellent agreement with the results
shown in Fig. 2.

In conclusion, we studied the collapse scenario for an
intense two-dimensional wave packet propagating in a fer-
romagnetic medium and experimentally showed that before
being self-destroyed the wave packet irradiates untrapped
continuous waves. Our simulation proves that the observed
effect is the fundamental phenomenon of wave emission
from collapsing packets in materials with cubic nonlinearity

and 2D dispersion of an order higher than parabolic. In
addition, since the ferromagnetic-film medium used in the
present study is also characterized by a uniaxial anisotropy,
the observed radiation takes the form of narrow-aperture
beams of continuous waves at very specific angles to the
bullet’s propagation direction. These angles are larger than
90°, since the underlying wave dispersion is of the back-
ward type. This specific effect of radiation of untrapped
waves along the caustic directions may exist for other 2D
media as well, provided uniaxial anisotropy of dispersion is
available or induced in the medium.
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