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The superallowed �-decay rates that provide stringent constraints on physics beyond the standard

model of particle physics are affected by nuclear structure effects through isospin-breaking corrections.

The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used

for the first time to compute those corrections for a number of Fermi transitions in nuclei from A ¼ 10 to

A ¼ 74. The resulting leading element of the Cabibbo-Kobayashi-Maskawa matrix, jVudj ¼ 0:974 47ð23Þ,
agrees well with the recent result of Towner and Hardy [Phys. Rev. C 77, 025501 (2008)].
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Nuclear � decays provide us with the crucial informa-
tion about the electroweak force and constraints on physics
beyond the standard model [1,2]. Of particular importance
are superallowed Fermi transitions between the J� ¼ 0þ
members of an isospin multiplet that can be used to test the
conserved vector current (CVC) hypothesis and provide
the most restrictive test of the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. Under assumptions
of zero energy transfer and pure isospin, the transition
matrix elements for superallowed � decays do not depend
on nuclear structure.

For actual nuclei, however, small corrections to the
Fermi matrix element of J ¼ 0þ, T ¼ 1 ! J ¼ 0þ,
T ¼ 1 superallowed transitions must be applied (see
Refs. [3–6] and Refs. quoted therein):

jMð�Þ
F j2 ¼ 2ð1þ �0

RÞð1þ �NS � �CÞ; (1)

where �C is a nuclear-structure-dependent isospin-
breaking correction, and �0

R and �NS are radiative correc-
tions. The corrected product of statistical rate function f
and partial half-life t can be written as

ft ¼ F t

ð1þ �0
RÞð1þ �NS � �CÞ (2)

with F t being nucleus independent.
In spite of theoretical uncertainties in evaluation of

radiative and isospin-breaking corrections, the superal-
lowed � decays provide a stringent test of the CVC hy-
pothesis. In turn, it is also the most precise source of
information on the leading element Vud of the CKMmatrix
[5,7]. Indeed, with the CVC hypothesis confirmed, Vud can
be extracted from the data by averaging over 13 precisely
measured superallowed � transitions spreading over a
broad range of nuclei from A ¼ 10 to A ¼ 74 [5].

The main focus of this work is isospin-breaking correc-
tions �C. This topic has been a subject of numerous theo-
retical studies using different techniques [5,8–13]. The

standard in this field has been set by Hardy and Towner
(HT) [4,5,14] who employed the nuclear shell model (SM)
to account for configuration mixing and the mean-field
approach to describe the radial mismatch of proton and
neutron single-particle (SP) wave functions. Our approach
to �C is based on the self-consistent isospin- and angular-
momentum projected nuclear density functional theory
(DFT) [15,16]. This framework can simultaneously
describe various effects that profoundly impact matrix
elements of the Fermi decay: namely, symmetry breaking,
configuration mixing, and long-range Coulomb polariza-
tion. It should also be noted that our method is quantum-
mechanically consistent (see discussion in Ref. [12]) and
contains no adjustable free parameters.
The isospin- and angular-momentum projected DFT

approach is based on self-consistent states j’i which, in
general, violate both rotational and isospin symmetries.
While the rotational invariance is broken spontaneously
[17,18], the isospin symmetry is broken both spontane-
ously (on the DFT level) and directly by the Coulomb
force. Consequently, the theoretical strategy is to restore
the rotational invariance, remove the spurious isospin mix-
ing present in the DFT wave function, and retain only the
physical isospin mixing caused by the Coulomb interac-
tion. This is achieved by the rediagonalization of the entire
Hamiltonian, consisting of the isospin-invariant kinetic
energy and nuclear interaction (Skyrme) terms, and
isospin-breaking Coulomb force, in a good-angular-
momentum and good-isospin basis

j’; IMK;TTzi ¼ N P̂T
TzTz

P̂I
MKj’i; (3)

where P̂T
TzTz

and P̂I
MK stand for the isospin and angular-

momentum projection operators and N is the normaliza-
tion factor. In the current version of the model, nuclear
isospin-breaking interactions and pairing have been
disregarded.
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The set of states (3) is, in general, overcomplete because
the K quantum number is not conserved. This difficulty
is overcome by selecting first the subset of linearly inde-
pendent states (collective space), which is spanned, for

each I and T, by the natural states j’; IM;TTziðiÞ that are
eigenstates of the overlap matrix [19,20]. Diagonalization
of the Hamiltonian in the collective space yields the
eigenfunctions

jn;’; IM;Tzi ¼
X

i;T�jTzj
aðn;’ÞiIT j’; IM;TTziðiÞ; (4)

where the index n labels eigenstates in ascending order
according to their energies while I,M, and Tz¼ðN�ZÞ=2
are strictly conserved. By construction, vectors (4) are free
from spurious isospin mixing. Moreover, since projection
is applied to the self-consistent DFT solution, a subtle
interplay between the Coulomb polarization (that tends to
make the proton and neutron wave functions different) and
the short-range nuclear attraction (acting in exactly the
opposite way) is properly taken into account. As discussed
in Refs. [15,16,21,22], direct inclusion of monopole polar-
ization effect, which is crucial for evaluation of isospin
mixing in open-shell heavy nuclei, excludes all core-based
models, thus leaving us with essentially one choice: the
nuclear DFT. Recent experimental data on isospin impuri-
ties deduced in 80Zr from the giant dipole resonance
�-decay studies [23] are consistent with the magnitude of
isospin mixing calculated with isospin-projected DFT [22],
and this is very encouraging.

As demonstrated in Ref. [21], in odd-odd N ¼ Z nuclei,
the isospin projection alone is not sufficient and a
simultaneous angular-momentum projection is a must.
Unfortunately, this leads to the appearance of singularities
in the energy kernels [22], thus preventing us from using
modern Skyrme energy density functionals (EDFs) as none
of them is usable, whereas those depending on integer
powers of the density, which are regularizable [24], are not
yet developed. Hence, at present, the only practical option is
to use theHamiltonian-drivenEDFswhich, for Skyrme-type
functionals, leaves only one option: the density-independent
Skyrme V (SV) parametrization of Ref. [25] supplemented
by tensor terms.

The unusual form of SV impacts negatively its overall
spectroscopic quality by impairing such key properties as
the symmetry energy [22], level density, and level order-
ing. These deficiencies affect the calculated isospin mix-
ing. For instance, for the case of 80Zr discussed above, SV
yields the isospin mixing 2.8%, i.e., smaller than the mean
isospin mixing 4.4% averaged over nine commonly used
Skyrme EDFs (see Fig. 1 of Ref. [21]). Of course, for the
description of �C, of importance is not the absolute mag-
nitude of isospin mixing but its difference between parent
and daughter states [13]. The lack of reasonable EDF is,
admittedly, the weakest point of our current calculations;

nevertheless, no significant improvement of this aspect can
be expected in the near future.
The 0þ ! 0þ Fermi, � decay proceeds between the

jI ¼ 0; T � 1; Tz ¼ �1i ground state of the even-even nu-
cleus and its isospin-analogue partner jI ¼ 0; T � 1; Tz ¼
0i in the N ¼ Z odd-odd nucleus. While the DFT state
representing the even-even nucleus is unambiguously de-
fined, the DFT state used to compute the N ¼ Z wave
function is the so-called antialigned configuration j’i �
j �� � �i (or j� � ��i), selected by placing the odd neutron
and the odd proton in the lowest available time-reversed (or
signature-reversed) SP orbits. The antialigned configura-
tions manifestly break the isospin symmetry but they pro-
vide a way to reach the jT � 1; I ¼ 0i states in odd-odd
N ¼ Z nuclei [16]. This situation creates additional techni-
cal problems. The antialigned configurations appear to be
very difficult to converge in the symmetry-unrestricted DFT
calculations. This can be traced back to time-odd compo-
nents of the EDF. In fact, only in a few cases werewe able to
obtain symmetry-unrestricted self-consistent solutions. This
forced us to impose the signature-symmetry on other DFT
wave functions, which implied a specific SP angular-
momentum alignment pattern [26].
The calculations presented here were done using the

DFT solver HFODD (v2.48q) [19], which includes both
the angular-momentum and isospin projection. The calcu-
lated values of �C depend on the basis size. In order to
obtain a converged result for �C with respect to basis
truncation, we use 10 oscillator shells for A < 40 nuclei,
12 oscillator shells for 40 � A < 62 nuclei, and 14 oscil-
lator shells for A � 62 nuclei. The resulting systematic
errors due the basis cutoff do not exceed �10%.
The equilibrium quadrupole deformations (�2, �) of the

antialigned configurations in odd-odd nuclei are, in most
cases, very close to those obtained for even-even isobaric
analogs. Typical differences do not exceed ��2 � 0:005
and �� � 1	 except for nearly spherical systems A ¼ 14
and A ¼ 42, where the concept of static deformation is ill-
defined, and for A ¼ 10 and A ¼ 18 pairs where odd-odd
and even-even partners have fairly different shapes. As we
shall see below, such a deformation difference results in
large values of �C.
All studied odd-odd nuclei, except for A ¼ 14, 38, and

42, are deformed; thus, to carry out projections, we could
use for them the unique lowest antialigned DFT states.
Also for A ¼ 14 and 38, unique configurations based on
the 1p1=2 and 2s1=2 subshells were used. A different ap-

proach was used to compute �C in near-spherical A ¼ 42
nuclei. In 42Sc, four possible antialigned DFT configura-
tions built on the SP orbits originating from the spherical
1f7=2 subshells can be formed, and the corresponding DFT

states differ slightly due to configuration-dependent polar-
izations [21]. Consequently, to evaluate �C for A ¼ 42 we
took an arithmetic mean over the values calculated for all
antialigned configurations.
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The unusually large correction �C � 10% has been cal-
culated forA ¼ 38 nuclei.Most likely, this is a consequence
of incorrect shell structure predictedwith SV. Specifically, as
a result of incorrect balance between the spin-orbit and
tensor terms in SV, the 2s1=2 subshell is shifted up to the

Fermi surface. This state is more sensitive to time-odd
polarizations than other SP states around 40Ca core, see
Table I inRef. [27].Consequently, the 38K ! 38Ar transition
has been excluded from our calculation of Vud.

The adopted values of �C are shown in Fig. 1 for
the Tz ¼ �1 ! Tz ¼ 0 transitions in light systems
(upper panel) and for Tz ¼ 0 ! Tz ¼ 1 transitions pertain-
ing to heavier systems (lower panel). It is instructive to
compare our results to those of Refs. [5,11]. In light nuclei,
the calculated �C are sensitive to the local shell structure.
Indeed, although our values of �C show roughly the same
trend as those of Ref. [5], the individual values differ. The
reason can be traced back to the poor spectroscopic quality
of SV, which manifests itself much stronger in light than in
heavier nuclei due to the low SP level density. Let us also
recall that the equilibrium minima in parent and daughter
nuclei with A ¼ 10 and A ¼ 18 differ, and this results in
increased �C values. As verified by DFT calculations
using other EDFs, and also the findings of Ref. [11],
with higher level density in heavier nuclei the detailed
shell structure seems to play a lesser role. This indicates
that gross features of configuration mixing in heavier
nuclei associated with long-range time-even (shape) corre-
lations are less dependent on a EDF parametrization and
may be relatively well captured by SV. The calculated
values of �C for heavier nuclei are indeed quite consistent
with the HT results [5], with the exception of A ¼ 62
and 66.

The predicted isospin-breaking corrections are listed in
Table I. All other ingredients needed to computeF t values
from Eq. (2), including empirical ft values and radiative
corrections �0

R and �NS, were taken from the most recent
compilation [28]. In the error budget ofF t in Table I, apart
from errors of ft and radiative corrections, we include 10%
systematic uncertainty in the calculated �C due to basis

truncation. The average value F t ¼ 3070:4ð9Þ s was
obtained using Gaussian-distribution-weighted formula to
conform with standards set by HT. This leads to jVudj ¼
0:974 47ð23Þ, which coincides with both the HT result

jVðHTÞ
ud j ¼ 0:974 18ð26Þ [5] and a central value obtained

from the neutron decay jVð�Þ
ud j ¼ 0:9746ð19Þ [7].

Combining the calculated jVudj with the values of jVusj ¼
0:2252ð9Þ and jVubj ¼ 0:003 89ð44Þ provided in Ref. [7],
we obtain jVudj2 þ jVusj2 þ jVubj2 ¼ 1:000 31ð61Þ, which
implies that unitarity of the CKM matrix is satisfied with a
precision of 0.1%.
While our value of jVudj is consistent with both HT and

neutron-decay results, a question arises about its confi-
dence level, especially in light of poor spectroscopic prop-
erties of SV. To this end, we carry out the confidence-level
(C.L.) test proposed recently in Ref. [28] using variants
including uncertainties on experiment, �0

R, and �NS. The
test is based on the assumption that the CVC hypothesis is
valid to at least �0:03% precision, implying that a set of
structure-dependent corrections should produce a statisti-
cally consistent set of F t values. Since only one set of
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FIG. 1 (color online). Calculated isospin-mixing corrections�C

forTz ¼ �1 ! Tz ¼ 0 (top panel) andTz ¼ 0 ! Tz ¼ 1 (bottom
panel). Our adopted values (stars) are compared to the values of
Ref. [5] (dots; including errors) and Ref. [11] (triangles).

TABLE I. Experimental ft values (in sec), �C values adopted
in this work (in %), calculated F t values (in sec), empirical
corrections (5) (in %), and individual contributions to �2 used in
the C.L. test.

Parent ft �C F t �ðEXPÞ
C �2

i

Tz ¼ �1 :
10C 3041.7(43) 0.559(56) 3064.8(48) 0.39(14) 1.3
14O 3042.3(11) 0.303(30) 3072.3(21) 0.38(06) 1.5
22Mg 3052.0(70) 0.243(24) 3082.2(71) 0.64(23) 3.0
34Ar 3052.7(82) 0.865(87) 3063.5(87) 0.65(27) 0.6

Tz ¼ 0 :
26Al 3036.9(09) 0.494(49) 3066.7(20) 0.39(04) 6.8
34Cl 3049.4(11) 0.679(68) 3069.8(26) 0.67(05) 0.0
42Sc 3047.6(12) 0.767(77) 3069.2(31) 0.74(06) 0.1
46V 3049.5(08) 0.759(76) 3069.0(30) 0.73(06) 0.3
50Mn 3048.4(07) 0.740(74) 3068.3(31) 0.69(07) 0.7
54Co 3050.8(10) 0.671(67) 3073.0(32) 0.77(08) 1.5
62Ga 3074.1(11) 0.925(93) 3088.7(41) 1.52(09) 41.0
74Rb 3084.9(77) 2.06(21) 3064(11) 1.88(27) 0.4
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calculated �NS corrections exists [3], ‘‘empirical’’ isospin-
symmetry-breaking corrections can thus be defined by

�ðEXPÞ
C ¼ 1þ �NS � F t

ftð1þ �0
RÞ

; (5)

and they are tabulated in Table I. The C.L. can be assessed
by minimizing the root-mean-square deviation between

predicted and empirical values of �C with respect to F t

in Eq. (5). The final result corresponding toF t ¼ 3070:0 s
is shown in Fig. 2. Individual contributions to �2 are also
displayed in Table I. Our value of reduced �2 (per degree of
freedom; in our case nd ¼ 11) is 5.2. This is considerably
higher than the values reported in Ref. [28] for the
Damgaard model [8,14] (1.7), SM with Woods-Saxon ra-
dial wave functions [5] (0.4), SM with Hartree-Fock radial
wave functions [4,9] (2.2), and the relativistic Hartree plus
RPA model of [11] (2.1). The low C.L. of our model results
primarily from the single point at A ¼ 62.

In summary, the state-of-the-art isospin- and angular-
momentum-projected DFT calculations have been per-
formed to compute the isospin-breaking corrections to
0þ ! 0þ Fermi superallowed � decays. Our results for

F t ¼ 3070:4ð9Þ s and jVudj ¼ 0:974 47ð23Þ were found to
be consistent with the recent HT value [5]. While the C.L.
of our �C values is low, primarily due to a poor spectro-
scopic quality of the EDF used, our framework contains no
adjustable parameters and is capable of describing micro-
scopically all elements of physics impacting �C. The re-
sults presented in this Letter should thus be considered as a
microscopic benchmark relative to which the further im-
provements (e.g., regularizable EDF or inclusion of pair-
ing) will be assessed.
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