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For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total

momentum is an observable characterizing the thermal state. We show that its cumulants are related to

thermodynamic potentials. In a relativistic system, for instance, the thermal variance of the total

momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to

the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary

conditions in the compact direction and (b) the ordinary partition function. In this form the generating

function is well suited for Monte Carlo evaluation, and the cumulants can be extracted straightforwardly.

We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different

temperatures.
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I. Introduction.—Thermal field theory is a theoretical
tool of central importance in condensed matter physics,
plasma physics, nuclear physics, and cosmology [1,2].
Obtaining first-principles predictions from a thermal field
theory is often challenging, since it describes an infinite
number of degrees of freedom subject to both quantum and
thermal fluctuations. New theoretical concepts and more
efficient computational techniques are still needed in many
contexts, particularly when weak-coupling methods are
inapplicable.

In this work we exploit the global symmetries of a
thermal theory to define the contributions to the partition
function of states with given quantum numbers and show
that they are well suited for ab initio Monte Carlo compu-
tations. Our main results, which are based on spatial trans-
lation invariance, concern the relative contribution to the
partition function of states with total momentum p. These
contributions form the probability distribution of p, whose
cumulants can be related in a simple manner to the equa-
tion of state by using Lorentzian or Galilean invariance.
For instance, in quantum chromodynamics (QCD) at zero
baryon chemical potential �, the variance of the total
momentum measures the entropy of the system. As we
will see shortly, the generating functionK of the cumulants
of the momentum distribution can be expressed as a ratio of
two partition functions. The latter are represented by
Euclidean path integrals with different boundary condi-
tions for the fields in the time direction, and their ratio
can therefore be computed by standard Monte Carlo
techniques.

While the following theoretical discussion extends to a
wide class of theories, we illustrate our ideas numerically
in the SU(3) Yang-Mills theory, where we determine the
entropy density of the system at three different tempera-
tures. Crucially, the method can be applied to QCD, since

the Hermiticity properties of finite-difference operators are
not affected by our ‘‘shifted’’ boundary conditions, and
hence the actions to be used in the simulations are always
real at � ¼ 0. As an example of an application to a non-
relativistic system, it can also be employed in the study of
neutron matter in the Euclidean approach of Ref. [3].
There are already several established methods to

compute the thermodynamic properties of gauge theories
[4–7]. They require either a vacuum subtraction or a re-
normalization constant to be determined, facts which make
it difficult to apply them at arbitrarily high and low tem-
peratures. Our method avoids these problems and has the
further advantage that a Symanzik improvement of the
action (i.e., a suppression of the discretization errors
[8,9]) automatically leads to a corresponding improvement
in the thermodynamic quantities. Computationally, the
method is rather expensive, since it consists in calculating
a ratio of partition functions. However, our experience
shows that, even with a simple algorithm, physics results
can be obtained with commonly available computing
resources.
II. Momentum distribution.—Recent progress in lattice

field theory has made it possible to define and compute by
Monte Carlo simulations the relative contribution to the
partition function due to states carrying a given set of
quantum numbers associated with exact symmetries of a
theory [10,11]. Here we apply these techniques to a finite
temperature and density system in the grand canonical
ensemble (or the canonical ensemble if there is no
conserved particle number). The relative contribution to
the partition function of the states with momentum p is
given by

Rð�;�;pÞ
L3

¼ hP̂ðpÞi ¼ Trfe��ðĤ��N̂ÞP̂ðpÞg
Trfe��ðĤ��N̂Þg ; (1)
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where the trace is over all the states of the Hilbert space,

P̂ðpÞ is the projector onto those states with total momentum

p, � ¼ 1=T is the inverse temperature, Ĥ the Hamiltonian,

N̂ the particle number, and L the linear size of the system.
The generating function K associated with the momentum
distribution is defined as

e�Kð�;�;zÞ ¼ 1

L3

X
p

eip�zRð�;�;pÞ: (2)

The connected cumulants are obtained from it as follows:

Kf2n1;2n2;2n3g
ð�1Þn1þn2þn3þ1

¼ @2n1

@z2n11

@2n2

@z2n22

@2n3

@z
2n3
3

KðzÞ
L3

��������z¼0
; (3)

where they have been normalized so as to have a finite limit
when L ! 1 and the ð�;�Þ dependence has been sup-
pressed. Finally, we can write

Rð�;�;pÞ ¼
Z

d3ze�ip�z Zð�;�; zÞ
Zð�;�Þ ; (4)

where Zð�;�; zÞ ¼ Trfe��ðĤ��N̂Þþip̂zg is a partition func-
tion in which states of momentum p are weighted by a
phase eip�z. The shifted partition function Zð�;�; zÞ can be
expressed as a path integral in Euclidean time by adopting
the shifted boundary conditions

�ð�; xÞ ¼ ��ð0; xþ zÞ (5)

with the þ (�) sign for bosonic (fermionic) fields, respec-
tively. From Eqs. (2) and (4), the generating function can
be written as the ratio of two partition functions:

e�Kð�;�;zÞ ¼ Zð�;�; zÞ
Zð�;�Þ ; (6)

i.e., two path integrals with the same action but different
boundary conditions. In a renormalizable theory, it there-
fore has a finite and universal continuum limit.
We remark that, in the large volume regime, the mo-

mentum distribution can be expressed at each value of p as
a saddle point expansion. Its leading term in 1=L3, for a
system with a finite correlation length, is a Gaussian with a
width equal to the second cumulant. Near a second-order
phase transition, on the other hand, the relative size of the
fourth and second cumulants can serve to characterize a
universality class.
III. Connection to thermodynamics.—In thermal field

theories, there is a connection between the cumulants of
the momentum distribution and thermodynamic functions.
In relativistic theories, the reason is that the momentum
density�i � T0i can be chosen to coincide with the energy
flux. In nonrelativistic theories, the particles are the only
carriers of momentum, and therefore the momentum den-
sity (divided by the massm of the particles) coincides with
the particle number flux [12]. The relation

Z
d3xeik3x3h�3ðxÞ�3ð0Þi ¼

� R
d3xeik3x3hT00ðxÞT33ð0Þic ðrel:Þ

m
R
d3xeik3x3hnðxÞT33ð0Þic ðnonrel:Þ (7)

then follows from the Ward identities associated with
(a) the conservation of momentum and (b) the conservation
of energy (particle number), respectively, in the relativistic
(nonrelativistic) case. Equation (7) is valid for any x0 � 0
and nonvanishing momentum k3 in a periodic box of size
L, and we now take the limit L ! 1, with k3L fixed. In a
fluid at rest the pressure pðTÞ is given by the thermal
average of the stress tensor hT̂iji ¼ �ijpðTÞ, and the rela-
tions @p

@� ðT;�Þ ¼ n, @p
@T ðT;�Þ ¼ s, and Tsþ�n ¼ eþ p

hold in the thermodynamic limit. We thus obtain

K2;0;0ð�;�Þ ¼
�
Tðeþ pÞ ðrel:Þ
Tmn ðnonrel:Þ: (8)

Alternatively, Eq. (8) can be derived directly at k3 ¼ 0 from
the same family of Ward identities. In this way an expres-
sion for the finite-volume correction is obtained [13].

Relativistic theories at � ¼ 0 constitute an important
special case that we investigate in more detail, since it
is relevant both to heavy-ion collisions [14] and to the
physics of the early Universe [15,16]. First, the relation
eþ p ¼ Ts implies that the thermal variance of the mo-
mentum is a direct measure of the entropy of the system.
Second, by establishing a recursion relation among the

cumulants based on the Ward identities, it is possible to
show that the fourth-order cumulants are related to the
specific heat of the system [13]:

cv ¼ K4;0;0

3T4
� 3K2;0;0

T2
¼ K2;2;0

T4
� 3K2;0;0

T2
: (9)

Combining the second and fourth cumulants, one can thus
obtain the speed of sound c2s ¼ s

cv
. One may prove [13]

that, in conformal field theories, the generating function is
completely determined by its first nonzero cumulant:

KCFTð�; zÞ
L3

¼ sCFTðTÞ
4

�
1� 1

ð1þ T2z2Þ2
�
: (10)

Third, it can be shown [13] that finite-volume effects in
K2;0;0 are exponentially small in mðTÞL, where mðTÞ is the
lightest screening mass in the theory, and the prefactor is
explicitly known [17]. In summary, the cumulants can be
used to calculate thermodynamic properties.
IV. Numerical implementation and results.—There are

many potential applications of formulas (8) and (9). As an
illustration we consider the SU(3) lattice Yang-Mills the-
ory defined in a cubic box of volume L3 with periodic
boundary conditions, at temperature � ¼ 1=T and lattice
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spacing a. Our goal is to show that the entropy density can
be computed in the thermodynamic and continuum limit.

Even though the lattice breaks continuous translation
invariance, discrete translations remain as exact symme-
tries of the lattice action. They suffice to define K at finite
lattice spacing precisely as in Sec. II. The function
Kð�; z; aÞ defined on the lattice differs by Oða2Þ effects
from its continuum counterpart.

The canonical partition function is given as usual by

Zð�Þ ¼ Trfe��Ĥg ¼
Z

D½U�e�SðUÞ; (11)

where we suppress the dependence of Z on a and D½U� is
the Haar measure over the gauge links U�ðx0; xÞ, for � ¼
0; 1; 2; 3 and for each lattice point ðx0; xÞ. For definiteness
we choose the action SðUÞ to be the standard Wilson
plaquette action [18], whose bare coupling we denote by
g20 (for unexplained notation, see Ref. [10]).

The most straightforward way to compute Zð�; zÞ=Zð�Þ
as given in Eq. (6) is to define a set of (nþ 1) systems with
partition functions Zð�; riÞ (ri ¼ i=n, i ¼ 0; 1; . . . ; n) and
corresponding actions �SðU; riÞ ¼ riSðUÞ þ ð1� riÞSðUzÞ,
where Uz is the field obeying shifted boundary conditions;
see Eq. (5). We can then write the identity

Zð�; zÞ
Zð�Þ ¼ Yn�1

i¼0

Zð�; riÞ
Zð�; riþ1Þ : (12)

If one defines the ‘‘reweighting’’ observable as

OðU; riþ1Þ ¼ e
�SðU;riþ1Þ� �SðU;riÞ; (13)

then the ratio Zð�; riÞ=Zð�; riþ1Þ in Eq. (12) can be com-
puted as its expectation value on the ensemble of gauge
configurations generated with the action �SðU; riþ1Þ [10].
The generating functional can thus be written as

Kð�; z; aÞ ¼ � Xn�1

i¼0

ln

�
Zð�; riÞ
Zð�; riþ1Þ

�
: (14)

The continuum limit value of the second cumulant is
obtained from a discrete lattice by a limiting procedure:

sðTÞ
T3

¼ K2;0;0ð�Þ
T5

¼ lim
a!0

2Kð�; z; aÞ
jzj2T5L3

; (15)

where z ¼ ðnza; 0; 0Þ, the integer nz being kept fixed when
a ! 0. The continuum value of the entropy is thus ap-
proached with Oða2Þ corrections.
If the set of interpolating systems is chosen so that the

error of each contribution in the sum is comparable and
n ¼ ðL=aÞ3, then the cost of the simulations for a given
relative precision onKð�; z; aÞ, at a fixed value of z, scales
approximatively as a�7, while it remains roughly constant
as a function of L. Each derivative of K at the origin
requires an extra factor / a�2 in statistics and therefore
in the overall cost. Such a cost figure does not take into
account autocorrelation times, and it depends heavily on
the particular algorithm that we have implemented. For
instance, a more refined interpolation path between the
initial and final systems may lead to a significant speedup.
We have calculated the entropy at three temperatures,

1.5, 4.1, and 9:2Tc; see Table I for the numerical results.
The update algorithm used is the standard combination of
heat-bath and overrelaxation sweeps [19–21]. The only
changes over the standard algorithm reside (a) in the
computation of the ‘‘staples’’ that determine the contribu-
tion to the action of a given link variable U�ðxÞ and (b) in

the more frequent updating of the two time slices on which
the observable has its support.
The bare coupling g20 was tuned by using the data of

Ref. [22] in order to match lattices of different �=a to the

TABLE I. Lattice parameters and numerical results with z ¼ ð2; 0; 0Þ. The quantity in the last column is the estimator for the entropy
density; see Eq. (15).

Lat 6=g20 �=a L=a 1
n ðLaÞ3 r0=a Kð�; z; aÞ 2Kð�;z;aÞ

jzj2T5L3

A1 5.9 4 12 2 4.48(5) 17.20(11) 5.10(3)

A1a 5.9 4 16 2 4.48(5) 40.71(15) 5.089(19)

A2 6.024 5 16 2 5.58(6) 13.05(10) 4.98(4)

A3 6.137 6 18 3 6.69(7) 7.32(8) 4.88(6)

A4 6.337 8 24 4 8.96(9) 4.32(16) 5.12(19)

A5 6.507 10 30 5 11.29(11) 2.62(17) 4.9(3)

B1 6.572 4 12 2 12.28(12) 22.22(11) 6.58(3)

B1a 6.572 4 16 2 12.28(12) 53.47(16) 6.684(20)

B2 6.747 5 16 2 15.34(15) 17.11(15) 6.53(6)

B3 6.883 6 18 3 18.14(18) 9.61(9) 6.40(6)

B4 7.135 8 24 4 24.5(3) 5.42(17) 6.42(20)

B5 7.325 10 30 5 30.7(4) 3.32(18) 6.1(3)

C1 7.234 4 16 4 27.6(3) 57.44(25) 7.18(3)

C2 7.426 5 20 5 34.5(4) 36.5(4) 7.13(8)

C3 7.584 6 24 4 41.4(5) 24.7(4) 6.94(12)
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same temperature. Motivated by a study of the free case,
we chose nz ¼ 2. The scaling behavior of the entropy
density is displayed in Fig. 1. We observe that the cutoff
effects are quite mild. Taking into account the systematic
uncertainty in performing the continuum extrapolation, our
results at the two lower temperatures are compatible with
the published results [23,24]. The results at 9:2Tc are new.

V. Final remarks.—In this Letter, we have introduced the
generating function of cumulants of the total-momentum
distribution and a new way of computing it. As an appli-
cation, we have shown that the second cumulant is a
measure of the enthalpy [or particle density in the non-
relativistic case; see Eq. (8)] and calculated the enthalpy
density of gluons at three different temperatures. The ideas
presented in this Letter have further interesting
applications.

One application is the determination of the partial pres-
sures of different symmetry sectors (labeled by continuous
as well as discrete quantum numbers) in the confined phase
of QCD. This will provide a far more stringent test of the
hadron resonance gas model than has been possible so far.
The latter model postulates that the QCD pressure is due to
the sum of the partial pressures of all zero-temperature
resonances of width � & T and is an important ingredient
in the phenomenology of heavy-ion collisions (see, for
instance, [25]). Beyond the pressure, any observable can
be calculated in the restricted ensemble where certain
quantum numbers assume prescribed values.

Our method has a ‘‘kinematic’’ character, and the lattice
action is the only ingredient in the calculation. It is con-
ceivable that the boundary conditions adopted in this Letter
can be used to formulate Symanzik improvement condi-
tions [8,9] or to compute the constants needed to define an
energy-momentum tensor which satisfies the Ward identi-
ties in the continuum limit [26].

We stress that the generating function Kð�;�; zÞ is
of intrinsic interest, beyond giving access to basic thermo-
dynamic quantities. It can be used to assess how nearly
scale-invariant the system is at a given temperature; see

Eq. (10). In QCD at finite baryon density and in the low-
temperature limit, the generating function K is an order
parameter for the spontaneous breaking of translation in-
variance. Finally, it may be of interest in analytic treat-
ments, where it is more convenient to absorb the shift z
into the action [27]. The propagators are then modified, the
parameter iz=� playing the role of an external velocity
parameter.
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FIG. 1 (color online). Scaling behavior of s=T3; see Eq. (15).
The Stefan-Boltzmann value reached in the high-T limit is also
displayed.
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