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We quantify the one-shot entanglement cost of an arbitrary bipartite state, that is, the minimum number

of singlets needed by two distant parties to create a single copy of the state up to a finite accuracy, by using

local operations and classical communication only. This analysis, in contrast to the traditional one,

pertains to scenarios of practical relevance, in which resources are finite and transformations can be

achieved only approximately. Moreover, it unveils a fundamental relation between two well-known

entanglement measures, namely, the Schmidt number and the entanglement of formation. Using this

relation, we are able to recover the usual expression of the entanglement cost as a special case.
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Among quantum-information processing tasks, entan-
glement manipulation, namely, the interconversion be-
tween entangled states using only local transformations
and classical communication, represents an important
primitive. In this scenario, the abstract notion of entangle-
ment becomes a fungible resource ‘‘as real as energy’’ [1].
This is one of the reasons for which intensive research has
been devoted to the study of entanglement manipulations
since the very early stages of Qquantum-information the-
ory, making such an operational theory of entanglement
one of its biggest successes.

In this context, however, the word ‘‘operational’’ should
not be confused with ‘‘practical.’’ Indeed, most results we
have at present about entanglement resource theory rely
on two unrealistic (and very strong) assumptions: (i) Many
independent and identically distributed (i.i.d.) copies of the
initial resource (e.g., the initial entangled state) are to be
converted into many i.i.d. copies of the target state. This
corresponds to assuming the absence of correlations in the
noisy (partially entangled) states which are either produced
or consumed by the entanglement manipulation procedure.
(ii) The optimal interconversion rate is computed as the
asymptotic input-to-output ratio, in the limit of infinitely
many initial and final copies.

These two assumptions constitute what is usually
called the asymptotic i.i.d. scenario. In order to establish
a truly general entanglement resource theory, then, one
should drop both assumptions (i) and (ii). The highest
possible degree of theoretical generality is described by
the so-called one-shot scenario, in which a single initial
state has to be transformed into a single desired final
state, up to a finite accuracy. Incidentally, this is indeed
the scenario in which experiments are performed, since
resources available in nature are typically finite and corre-
lated, and transformations can be achieved only
approximately.

One end of such a generalized entanglement resource
theory, namely, one-shot entanglement distillation, was

considered by the present authors in Ref. [2]: There we
described the case of two distant parties trying to convert,
up to some fixed error ", a finite number of initially
shared noisy bipartite entangled states into noiseless en-
tanglement, i.e., singlets, by using local operations and
classical communication (LOCC) only. In this Letter, we
completely characterize the other end of the theory,
namely, one-shot entanglement dilution: Here the goal is
to utilize a finite amount of initial noiseless entanglement
to produce (again, by LOCC and up to some fixed error ") a
single bipartite target state �AB, which might not be di-
rectly available otherwise. In this scenario, entanglement
dilution is relevant as the ‘‘reverse’’ of entanglement dis-
tillation: It shows that singlets indeed provide a universal
resource from which any bipartite state can be obtained by
LOCC, quantifying, at the same time, the minimum
amount of singlets needed (i.e., the cost) to produce a given
bipartite state.
Our main result [3] is a formula for the minimum

number of singlets necessary for successfully producing
a given target state �AB up to a finite error ". We refer
to this quantity as the one-shot entanglement cost

Eð1Þ
C ð�AB; "Þ. The formula we derive involves a generalized

quantum relative entropy, namely, the relative Rényi en-
tropy of order zero [4], and makes use of a smoothing
procedure similar to that introduced in Ref. [5]. When
specialized to the asymptotic i.i.d. scenario, our formula
yields the entanglement cost given in terms of the regular-
ized entanglement of formation [6,7]. This is in accordance
with the claim that the one-shot entanglement resource
theory is more general than the asymptotic i.i.d. one.
Finally, as a by-product of our findings, we are able to
prove that two entanglement monotones, namely, the en-
tanglement of formation [6] and the Schmidt number [8],
which were previously considered to be unrelated, are
in fact directly connected, in the sense that the former
is recovered from the latter by suitable smoothing and
regularization, as explained below.
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Basic concepts.—In order to clearly state our main
results, given in Theorems 1 and 2 below, we first have
to introduce some notations and definitions. Throughout
the paper, the letter H denotes finite-dimensional Hilbert
space, whereas SðH Þ denotes the set of states (or density
operators, i.e., positive operators of unit trace) acting on
H . Furthermore, let 1 denote the identity operator acting
onH . Given a positive operator! � 0, we denote by�!

the projector onto its support, and, for a pure state j’i, we
denote the projector j’ih’j simply as ’. Moreover, given
two Hilbert spacesH A andH B, of dimensions dA and dB,

respectively, with two given orthonormal bases fjiAigdAi¼1

and fjiBigdBi¼1, we define the canonical maximally entangled

state in H A �H B of Schmidt number M � minfdA; dBg
to be j�þ

Mi ¼ M�1=2
P

M
i¼1 jiAi � jiBi.

Information-theoretical protocols, since Shannon, are
usually characterized in terms of suitable entropic quanti-
ties. In quantum-information theory, too, entropic quanti-
ties like the von Neumann entropy, the conditional entropy,
and the mutual information are often encountered. All
these quantities can in fact be derived from the quantum
relative entropy [4], which is defined, for a state � and an
operator � � 0, as

Srð� k �Þ :¼
�
Tr½� log�� � log��; if �� � ��;
þ1; otherwise:

(The logarithm in the above equation and in what follows is
taken to base 2.) For example, the von Neumann entropy of
a state �, defined as Sð�Þ :¼ �Tr½� log��, can be equiv-
alently written as Sð�Þ ¼ �Srð� k 1Þ. Our main results
are, however, expressed in terms of an alternative relative
entropy, namely, the relative Rényi entropy of order zero,
which, for a state � and an operator � � 0, is defined as

S0ð� k �Þ :¼
�� logTr½����; if Tr½����� � 0;
þ1; otherwise:

From these two relative entropies Sr and S0, we define
the corresponding conditional entropy of a given bipartite
state �AB given a state �B as

H?ð�ABj�BÞ :¼ �S?ð�AB k 1A � �BÞ (1)

and the conditional entropy of �AB given the subsystem
B as

H?ð�ABjBÞ :¼ max
�B2SðH BÞ

H?ð�ABj�BÞ; (2)

for ? 2 fr; 0g. It turns out (see, e.g., Lemma 6 in [9])
that Hrð�ABjBÞ ¼ Hrð�ABj�BÞ ¼ Sð�ABÞ � Sð�BÞ, where
�B ¼ TrA½�AB�, for any given �AB. However, in general,
H0ð�ABjBÞ � H0ð�ABj�BÞ.

It is also convenient to introduce, for any given decom-
position of a bipartite state �AB into a pure-state ensemble
E ¼ fpi; j�i

ABig such that
P

ipi�
i
AB ¼ �AB, the tripartite

classical-quantum (c-q) state

�E
RAB

:¼ X

i

pijiihijR ��i
AB; (3)

where R denotes an auxiliary classical system represented
by the fixed orthonormal basis fjiRig. Given a pure-state
ensemble E, let �i

A
:¼ TrB½�i

AB�, for all i.
As noted earlier, in the realistic scenario of finite entan-

glement resources and imperfect transformations, one is
compelled to allow for a nonvanishing error, say, ", in
achieving the final desired state. This error " manifests
itself as a ‘‘smoothing’’ of the underlying information-
theoretical quantity characterizing the task, which in our
case turns out to be a conditional Rényi entropy of order
zero. This fact leads us to define, in analogy with Ref. [5], a
smoothing as follows: For any " � 0 and any pure-state
ensemble E ¼ fpi; j�i

ABig of �AB, we define the c-q–
smoothed conditional zero-Rényi entropy of the c-q state

�E
RA

:¼ TrB½�E
RAB� ¼

P
ipijiihijR � �i

A, given R, as

H"
0 ð�E

RAjRÞ :¼ min
!RA2B"

cqð�E
RA
Þ
H0ð!RAjRÞ; (4)

where the minimum is taken over classical-quantum

operators belonging to the set B"
cqð�E

RAÞ defined, for any
pure-state ensemble E ¼ fpi; j�i

ABig of �AB, as follows:

B"
cqð�E

RAÞ :¼
�

!RA � 0j!RA ¼ X

i

jiihijR �!i
A

and k!RA � �E
RAk1 � "

�

;

with kXk1 :¼ TrjXj. The basis fjiRig used in the above
definition is the same as that appearing in Eq. (3). Note

that operators in B"
cqð�E

RAÞ are actually very close to being

density operators, since 1� " � Tr½!RA� � 1þ ", for

any !RA 2 B"
cqð�E

RAÞ.
Main result.—Two parties, Alice and Bob, share a single

copy of a maximally entangled state j�þ
Mi of Schmidt

number M and wish to convert it into a given bipartite
target state �AB by using an LOCC map �. We refer to the
protocol used for this conversion as one-shot entanglement
dilution. For the sake of generality, we consider the situ-
ation where the final state of the protocol is "-close to the
target state with respect to a suitable distance measure, for
any given " � 0. As a measure of closeness, we choose
here the (squared) fidelity, which is defined, for states �
and �, as F2ð�;�Þ :¼ ðTrj ffiffiffiffi

�
p ffiffiffiffi

�
p jÞ2. In this way, defining

the fidelity of the protocol to be F2ð�ð�þ
MÞ; �ABÞ, we

require F2ð�ð�þ
MÞ; �ABÞ � 1� ". Furthermore, for any

given initial resource j�þ
Mi and any given target state

�AB, we denote the optimal fidelity of one-shot entangle-
ment dilution as

F dilð�AB;MÞ :¼ max
�2LOCC

F2ð�ð�þ
MÞ; �ABÞ:
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Definition 1 (one-shot entanglement cost).—For any
given �AB and " � 0, the one-shot entanglement cost is
defined as follows:

Eð1Þ
C ð�AB; "Þ :¼ min

M2N
flogM: Fdilð�AB;MÞ � 1� "g:

Notice that, by its very definition, the one-shot entan-

glement cost Eð1Þ
C ð�AB; "Þ constitutes, for any " � 0, an

entanglement (weak) monotone, in that it cannot increase
under the action of an LOCC map [10]. As mentioned
earlier, the smoothing here emerges naturally from a purely
operational consideration, in the sense that it is a natural
consequence of the finite accuracy we allow in the proto-
col. This is in contrast to the approach adopted in Ref. [11],
where a smoothing is instead introduced axiomatically.

Our main result is given by the following theorem:
Theorem 1.—For any given target state �AB and any

given error parameter " � 0, the one-shot entanglement
cost under LOCC, corresponding to an error less than or
equal to ", satisfies the following bounds:

min
E

H
2
ffiffi
"

p
0 ð�E

RAjRÞ � Eð1Þ
C ð�AB;"Þ � min

E
H"=2

0 ð�E
RAjRÞ;

where the minimum is taken over all pure-state ensemble

decompositions E ¼ fpi; j�i
ABig of �AB, and �E

RA ¼
TrB½�E

RAB�, with �E
RAB being the tripartite extension of

�AB defined in (3).
For any given " � 0, Theorem 1 essentially identifies

minEH
"
0 ð�E

RAjRÞ as the quantity representing the one-shot

entanglement cost Eð1Þ
C ð�AB; "Þ [12].

The theory developed here not only provides a complete
characterization of the one-shot entanglement cost, it also
yields a simple proof of a fundamental asymptotic result.
It is known [7] that the asymptotic entanglement cost
ECð�ABÞ of preparing a bipartite state �AB is equal to the
regularized entanglement of formation, defined as

E1
F ð�ABÞ :¼ lim

n!1
1

n
EFð��n

ABÞ; (5)

where EFð�ABÞ :¼ minE
P

i piSð�i
AÞ denotes the entangle-

ment of formation of the state �AB [6]. Applying our main
result, Theorem 1, to the case of multiple (n) copies of the
bipartite state �AB and taking the asymptotic limit (n ! 1)
yields a new proof of the identity ECð�ABÞ ¼ E1

F ð�ABÞ:
Theorem 2.—For any given target state �AB, the follow-

ing identity holds:

lim
"!0þ

lim
n!1

1

n
Eð1Þ
C ð��n

AB; "Þ ¼ E1
F ð�ABÞ: (6)

Theorem 2, together with the results in Ref. [7],
establishes that the asymptotic entanglement cost is alter-
natively expressible as the regularized one-shot entangle-
ment cost, in the limit " ! 0þ.

The theorems stated above emphasize the generality and
twofold relevance of the one-shot analysis: On one hand,

it gives a complete description of realistic scenarios of
entanglement dilution; on the other hand, it provides a
unified theoretical framework from which previous results
can be derived as special cases.
Discussion.—In the case of perfect (zero-error) entan-

glement dilution, corresponding to the case " ¼ 0,
Theorem 1 says that the corresponding one-shot entangle-
ment cost is given by

Eð1Þ
C ð�AB; 0Þ ¼ min

E
H0ð�E

RAjRÞ: (7)

The above equation can be made more explicit as follows:

Eð1Þ
C ð�AB; 0Þ ¼ min

E
max

i
logTr½��i

A
�;

where, for any given pure-state ensemble decomposition
E ¼ fpi; j�i

ABig of �AB, �
i
A
:¼ TrB½�i

AB�. The quantity on
the right-hand side of the equation above coincides with
the logarithm of the Schmidt number (LSN) of the mixed
state �AB, introduced and studied in Ref. [8]. In Ref. [13],
the same quantity was denoted as Esrð�ABÞ and was
shown to characterize the zero-error entanglement cost

Eð1Þ
C ð�AB; 0Þ. However, until now, there was a gap in the

theory of entanglement dilution, in the sense that it was
unclear how these zero-error results could be related to the
usual notion of entanglement cost, for which the error
vanishes only in the asymptotic limit.
The results we presented above show that it is indeed

possible to fill such a gap by suitably smoothing the zero-
error quantities. In fact, let us introduce a smoothed LSN
as follows:

E"
srð�ABÞ :¼ min

!AB2C"ð�ABÞ
Esrð!ABÞ; (8)

where now the smoothing is performed with respect to
the compact set of normalized states C"ð�ABÞ centered at
�AB defined as

C"ð�ABÞ :¼f!AB2SðH A�H BÞjF2ð!AB;�ABÞ�1�"g:

Then, using the arguments given below, one can prove that,

for any " � 0, the identity Eð1Þ
C ð�AB;"Þ ¼ E"

srð�ABÞ holds.
First, for any !AB 2 C"ð�ABÞ, Esrð!ABÞ singlets can be
used to create, with zero error, the state !AB, which
is, by construction, "-close to �AB. This proves that

Eð1Þ
C ð�AB; "Þ � E"

srð�ABÞ. For the other direction, let us

assume that Eð1Þ
C ð�AB; "Þ<E"

srð�ABÞ. Definition 1 then

implies that, with Eð1Þ
C ð�AB;"Þ singlets, it is possible to

create a state, say, ~!AB, which is "-close to �AB. This

in turn implies that ~!AB 2 C"ð�ABÞ, with Esrð ~!ABÞ ¼
Eð1Þ
C ð�AB; "Þ<E"

srð�ABÞ, which contradicts the fact that

E"
srð�ABÞ is defined as a minimum in (8).
We hence obtain the following corollary of Theorem 2:
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Corollary 1.—For any given state �AB, the entanglement
of formation EFð�ABÞ and the LSN Esrð�ABÞ are related as
follows:

lim
"!0þ

lim
n!1

1

n
E"
srð��n

ABÞ ¼ E1
F ð�ABÞ: (9)

Essence of proofs.—We present here only the main steps
of the proofs of the results stated above. The interested
reader is referred to Ref. [3] for detailed derivations. The
proof of Theorem 1 relies on the following lemma:

Lemma 1 [13,14].—For any given bipartite state �AB, the
optimal dilution fidelity is given by

F dilð�AB;MÞ ¼ max
E

X

i

pi

XM

j¼1

�ðiÞ
j ; (10)

where the maximum is over all pure-state decomposition

E ¼ fpi; j�i
ABig of �AB, and f�ðiÞ

j gj are the eigenvalues of

�i
A ¼ TrB½�i

AB�, arranged in nonincreasing order.
Using this lemma and Definition 1, we can prove that

Eð1Þ
C ð�AB;"Þ ¼ minEE

"ðEÞ, where

E"ðEÞ :¼ min
f�i

A
g

�

max
i

logTr½�i
A�
��������

X

i

piTr½�i
A�

i
A� � 1� "

�

;

where f�i
Ag is an unconstrained set of projectors, that is,

not necessarily orthogonal nor complete. The proof of

Theorem 1 then reduces to proving that H
2
ffiffi
"

p
0 ð�E

RAjRÞ �
E"ðEÞ � H"=2

0 ð�E
RAjRÞ, for any ensembleE and any " � 0.

This is done by standard tools like convexity arguments
and the ‘‘gentle measurement’’ lemma [15].

As regards the asymptotic result of Theorem 2, the
starting point is to note that the entanglement of formation

itself can be expressed as a conditional entropy EFð�ABÞ ¼
minEHrð�E

RAjRÞ, in close analogy with the expression (7)

of the zero-error one-shot entanglement cost. Theorem 2
then reduces to the identity

lim
"!0þ

lim
n!1

1

n
min
En

H"
0 ð�En

RnAn
jRnÞ ¼ lim

n!1
1

n
min
En

Hrð�En

RnAn
jRnÞ

� E1
F ð�ABÞ; (11)

where En denotes a pure-state ensemble decomposition
fpn

i ; j�i
AnBn

ig of ��n
AB, such that ��n

AB ¼ P
ip

n
i �

i
AnBn

, and

�En

RnAn
¼ TrH �n

B
½�En

RnAnBn
�, with �En

RnAnBn
denoting the c-q

extension of ��n
AB as in Eq. (3). The identity (11) is proved

by employing the information spectrum method [16], re-
sults of Ref. [17], and a generalized version of Stein’s
lemma established in Ref. [18].
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