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Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-
Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of
nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell
nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been
observed by violation of Reid’s EPR inequality, which is based on inferred variances of complementary
observables. Here we propose and experimentally test a new criterion based on entropy functions, and
show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic

criterion our experimental results show EPR steering, while the variance criterion does not. Our results
open up the possibility of observing this type of nonlocality in a wider variety of quantum states.
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Since the early days of the theory, nonlocality was
spotted as a salient feature of quantum mechanics. The
debate started with the argument of Einstein, Podolsky,
and Rosen in 1935 that the theory could not be considered
complete if the assumptions of locality and realism (which
they supported) were to hold [1]. They proposed the ex-
istence of some ‘“‘hidden variables”, which would com-
plete quantum theory. Schrodinger, in turn, was troubled
by the fact that according to quantum mechanics one party
Alice (A) could seemingly “‘steer” a remote system of
some other party Bob (B) into an eigenstate of some
arbitrary observable. These counterintuitive nonlocal ef-
fects, or ““spooky action at a distance” as EPR put it, were
collectively dubbed “‘entanglement”. In 1964, John S. Bell
introduced his famous inequality for local hidden variable
theories, which crucially brought the nonlocality debate to
an experimentally testable form [2]. It was only with
the recent advent of quantum information theory, however,
that the various concepts packaged together under the
“nonlocality” label would be sharply distinguished.

At present, essentially three distinct types of nonlocal
correlations can be identified in nature: Bell nonlocality,
Schrédinger’s steerability, and entanglement [3,4]. Bell
nonlocality, the strongest of the three, concerns the exis-
tence or not of a local hidden variable model for a set of
correlations. If such a model does not exist, then the corre-
lations violate some Bell-type inequality, and are termed
Bell nonlocal. Bell nonlocality can be stated without any
reference to quantum theory, and could thus be thought of
as the most fundamental of the nonlocality types. This is
reinforced by the fact that it is the most stringent to test
experimentally, with a positive test for Bell nonlocality
implying in nonlocality of the other two types as well.

On the lower end of the hierarchy is quantum entangle-
ment, which was formally defined in 1989 by Werner who
distinguished it from Bell nonlocality [5]. Entanglement
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has received a lot of attention as the underlying resource
for quantum computation and certain quantum information
tasks. A vast amount of criteria for entanglement detection
and subsequent experimental tests have appeared in the
literature [6,7].

The concept of steering has caught the least amount of
attention. Schrodinger’s intuition that one party can re-
motely prepare some ensemble of quantum states by local
measurement on the other part of an entangled state has
been formalized in the Hughston-Josza-Wootters theorem
[8,9]. In 2007, Wiseman and collaborators cast steering in
terms of a quantum information task, and showed that this
class of nonlocality is distinct and strictly intermediate
between the other two [3]. Interestingly, the three classes
are identical for bipartite pure states, a fact which may be
responsible for the pronounced delay in formally distin-
guishing among them. Experimental demonstration of this
distinction has been performed for a pair of qubits [10]. We
note that this framework has been extended to more than
two parties [11], and refer the reader to [3,4] for a more
in-depth discussion on the differences among the classes of
nonlocality.

Steering has been proved to be the nonlocal property
behind what came to be known as EPR inequalities, which
are tests which exhibit the conflict between completeness
of quantum theory and local realism—the EPR paradox
[3,4,12,13]. We thus group these two terms together and
refer to both types of inequalities as “EPR steering”
criteria. The most famous EPR-steering criteria, formu-
lated by Margaret Reid [12], was cast in terms of inferred
variances of complementary observables. Reid’s inequality
has been violated for a number of continuous variable
quantum systems [14,15], thus demonstrating “EPR
steering’’ correlations.

The Reid inequality relies on variances, and as a result
is capable of detecting correlations that appear up to
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second-order in the tested observables. There are, however,
a number of entangled continuous variable states (some
even pure states), which do not violate the variance in-
equality. Since pure entangled states should display the
EPR steering form of nonlocality, the correlations must
be hidden in higher-order moments of the observables. A
natural question is: do these states violate some higher-
order EPR-steering inequality? Here we partially answer
this question in the affirmative by introducing and experi-
mentally testing a novel criterion for steering that is based
on Shannon entropies. We exhibit the connection to the
variance inequality [12], which arises from ours as a limit-
ing case. This proves the new entropic criterion is more
powerful in the sense that it detects EPR correlations that
the variance inequality does not. This aspect is then con-
firmed experimentally using spatially entangled photons.
In Ref. [3], EPR steering was fashioned in terms of a
task in which Alice sends a quantum system to Bob, with
the goal of convincing Bob that she is sending him one part
of an entangled state, as opposed to a state chosen from
some ensemble. It was argued in [3] that EPR steering is
thus demonstrated by the nonexistence of a local hidden
state (LHS) model for their measurement outcomes. That
is, we say that the correlations demonstrate EPR steering if
the joint measurement probability cannot be written as

P(ra rg) = 2. PWPral)Py(rgld), (1)
A

where r4 and rp are the outcomes of measurements R, and
Rp. Here A are predetermined (hidden) variables that
specify an ensemble of states, P are general probability
distributions and P, are probability distributions which
correspond to measurement on the quantum state specified
by A. A bipartite state for which a LHS model like the one
above can be written for any choice of measurements is
called nonsteerable. Note that this definition is intrinsically
asymmetric, since it encompasses the power of Alice to
steer Bob’s state.

Any constraint on the possible phenomena that stems
from (1) is called an steering criterion [4]. Here we derive
an EPR steering criteria using the Shannon entropy.
First, we use (1) to write the conditional probability
as  P(rglry) = X\ P(rg, Alry), with  P(rg, Alry) =
P(Alra)Py(rglA). Consider now the non-negativity of
the relative entropy [16] between P(rg, Alry) and
P(Alry)P(rglry):

P(rp, Alry) _
;[drB’P(rB, )\er)ln?(MrA)T(VBVA) =0. (2

Rearranging terms, we arrive at

h(RgIRy = rs) = D> P(Alr)ho(Rpld),  (3)
A

where h(R) = — [drP(r)InP(r) is the Shannon entropy.
Averaging with P(r,) over r, gives

h(RgIR,) = Y P(Mhg(RglA), 4)
A
where the conditional entropy is defined as [16]

h(RyIR,) = — [ draPr)h(RyIRy = ). (5)

Now let us consider that the measurements correspond
to either position (r = x) or momentum (r = p) measure-
ments. The x and p distributions of a quantum system must
satisfy the entropic uncertainty relation [17]:

which we can apply to each state marked by A in (4) to
arrive at an entropic steering criterion:

]’l(XleA) + h(PBlPA) = In7re. (7)

The EPR steering criterion derived by Reid [12] can be
obtained as a limiting case of (7). The Reid inequality is
stated in terms of minimum variances A2. (Rp) obtained
when Alice infers the outcomes of Bob’s measurement of
the property Rp of system B given that she measured
property R4 on system A. This is given by A2. (Rp) =
[ draP(ry)A*(rglry), where A2(rglr,) is the variance of
the conditional probability distribution P(rg|ry) [13]. The
Shannon entropy of a probability distribution with variance
A%(rglry) is upper bounded by In[27eA>(rg|rs)]/2 [16],
which is an upper limit for Alice’s ignorance about rp
given r4. This upper bound, together with the definition
of A, and the concavity of the logarithm function, leads
to the upper bound for the left-hand side of Eq. (7):

ln[z’n-eAmin(XB)Amin(PB)] = h(XleA) + h(Pb’lPA)
(8)

By combining inequalities (7) and (8), we arrive at the EPR
steering criterion derived by Reid [12]:

Azmin(XB)Aﬁ]in(PB) = 21;- 9

Thus, criterion (9) emerges as a limiting case of criterion
(7). The entropic criterion (7) is therefore more sensitive
than (9), which implies that it should detect EPR steering in
certain states that the variance criteria (9) does not.

As an example, consider the class of bipartite quantum
states described by the wave function

(x4, Xp)
— . H, <M)e—(m+x3>2/4oi)e—(<xA—x3>2/4o%>>,

\/50'+
(10)

where H , is the nth-order Hermite polynomial and C, a
normalization constant. Numerical analysis (n = 15)
shows that the variance criteria (9) identifies steering
only when the ratio o./o: =1+ 1.5\/n, while the
entropic criterion always identifies steering, except in
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the case when the state is indeed separable (n = 0 and
o = o_). As another example, we tested the nonlocal cat
state |4 ,) that was experimentally produced in Ref. [18],
using the experimental parameters reported therein. We
found the violation A(X,|Pg)+ h(P4|Xp) =2.10<Inre,
and no violation of the variance inequality (9).

To further illustrate the utility of the entropic criterion
(7), we experimentally tested it for a pair of spatially
entangled photons. Spatial entanglement of photon pairs
was shown experimentally in Ref. [15], and discussed at
depth in a recent review paper [19]. FIG. 1 shows the
experimental setup. The quantum state of the down-
converted photons at the crystal is given to good approxi-
mation by [19,20]

) — ] f dpadpsv(ps + pe)s(pa — pe)lpadlps) (1)

where we consider only one spatial dimension for simplic-
ity. Here, v(p) is the angular spectrum of the pump beam,
and p,, pp are the transverse wave vectors of the down-
converted photons A and B, respectively. The function
s(p) = 4Ksinc(Lp?/4K), where L is the length of the
BBO crystal and K is the wave number of the pump
beam. A number of steps were taken to engineer the
wave function (x4, xz|4) corresponding to the state (11),
so that it was similar to that of Eq. (10) with n = 1, as has
been previously described elsewhere [21]. In our setup the
pump beam was focused at the crystal face, so that o and
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FIG. 1 (color online). Experimental setup. SPDC in a BBO
crystal produces spatially entangled photon pairs (A = 884 nm).
A microscope slide is used to produce a first-order Hermite
Gaussian beam, which is focused at the crystal face with a
cylindrical lens. Lenses (f = 100 mm) are used to map the
momentum distribution at the crystal face onto the output planes,
where transmission masks with a Gaussian intensity profile are
placed. The figure shows the setup for p measurements.
Diagrams for the lens systems used for x and p measurements
are shown in the bottom left. Here f; = 150 mm, f, = 50 mm
and f3 = 250 mm. The horizontal slit detection apertures are
mounted directly onto Detectors D, and Dy (not shown for
clarity), and are scanned in the vertical direction.

o_ were of the same order of magnitude. We measured
0% =~ 0.566 mm?> and o =~ 0.240 mm? at the output
planes.

An imaging lens system using two lenses (f; and f, in
inset of FIG. 1) was used to measure the near field (x
variable), so that the output plane of the source was imaged
at the detection plane. The far-field (p variable) was mea-
sured by scanning in the focal plane of a second lens
system (f5 in inset of Fig. 1). The detectors were scanned
in discrete steps zqe, and coincidence counts were regis-
tered, resulting in two 2D tables of coincidence measure-
ments C,, (24, 25) and C,,,(z4, 2), Where z, and zj are the
transverse positions of detectors D, and Dp, respectively.
The discrete joint probability distributions were then
obtained by :Prr(ZA) ZB) = Crr(ZA’ ZB)/ZZA,ZB Crr(ZAy ZB)7
where r = x, p. The coincidence measurements are shown
in Fig. 2.

We first tested the variance-product EPR criterion (9),

using the experimental data to compute A2 (R;) =

y2A2. (Z;), where A2, (Z,) = Zz‘/?(zj)Az(z |z;) for i,
j=A, B. Here A*(z;|z;) is the variance in z; given
result z; and v, is the scaling factor, used to relate the
detector positions z to the x and p variables. Explicitly,
ve = f2/f1, due to the magnification factor of the lens
system, and vy, = 27/ f3A for p measurements We
obtained mm(XA) = 0.14 * 0.02 mm?, mm(PA)
3.1 0.2 mm 2, mln(XB)—015+002mm and

A2. (Pg) = 3.4 = 0.2 mm 2. In all results reported here
and below, the uncertainty in the experimental data was
obtained by error propagation of the Poissonian count
statistics. The variance EPR criterion (9) gives

mln(XA)A (PA) = (0.44 = 0.01 > 4—11,
ALin(Xp) AL, (Pp) = 0.51 £0.01 >4

min

(12)

Thus, the variance inequality is satisfied, and EPR steering
correlations are not detected.

Next we tested the entropic steering criterion (7). The
discrete entropies of the coincidence count distributions
were calculated using H(Z) = =Y P(z) InP(z),
H(Zy, Zg) = 3., ., P(za, 25) InP(z4, z). The differential
entropies h(Z,, Zg) and h(Z) of the continuous variables

FIG. 2 (color online).

Coincidence counts for x and p mea-
surements used to calculate the probability distributions
P(xp, xp) and P(py, pp)-
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can be calculated from the discrete entropies H(Z,, Zp)
and H(Z):

WZy, Zg) = H(Za, Zp) + In(z3ep),
h(Z) =~ H(Z) + ln(zstep)-

(13a)
(13b)

Here, z4., appears due to the discretization of the continu-
ous distribution [16]. For x measurements zy, = 0.02 mm,
while zg., = 0.05 mm for p measurements. Finally, the
entropy of the probability distributions for the R = X, P
variables are calculated from the experimental data using
h(R) = h(Z) + Iny, and h(R,, Rp) = h(Z4, Zp) + Iny2.
Using these experimental results, the conditional entropies
of the corresponding continuous probability distributions
can be calculated using h(R;|R;) = h(R;, R;) — h(R)).
We found Ah(X,) = 0.56 = 0.01, h(P,) = 2.35=*0.01,
h(Xg) = 0.58 = 0.01, h(Pg) = 2.37 £ 0.01, h(X,, Xg) =
0.73 = 0.02, and h(P,, Pg) = 4.17 = 0.03. Finally, we
calculated
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