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We have created a long-lived (� 40 s) persistent current in a toroidal Bose-Einstein condensate held in

an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the

condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier

strength such that the local flow velocity at the barrier exceeds a critical velocity. The measured critical

velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first

realization of an elementary closed-loop atom circuit.
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Quantum fluids can exhibit properties such as long-
range coherence and superfluidity that make them useful
for constructing sensors and other devices. For example,
superconducting quantum interference devices (SQUIDs)
are sensitive magnetic field detectors [1], and superfluid He
circuits have been used to detect rotation [2,3]. Ultracold
atomic-gas analogs of electronic devices and circuits, or
‘‘atomtronics’’ have been proposed including diodes and
transistors [4]. Of particular interest is the realization of an
atomic-gas SQUID analog. SQUID circuits have been
realized with either tunnel or weak link junctions [1,5,6].
In atomic Bose-Einstein condensates, Josephson junctions
have been demonstrated only between adjacent wells [7,8].
Here we present the first implementation of a nontrivial,
closed-loop atom circuit and show that it is possible to
control the current at the single-quantum level by changing
the strength of a weak link. This is an essential step toward
realizing an atomic SQUID analog.

Superfluids flow without dissipation if the flow velocity
is below a threshold determined by the lowest energy
excitations allowed for the system [9]. In a homogeneous
condensate the lowest energy excitations are phonons [10]
and the Landau critical velocity is the speed of sound [11].
Real systems are finite and therefore inhomogeneous; con-
sequently, the lowest energy excitations can be vortexlike
[12] and dissipation can occur at velocities well below the
sound speed [13]. Dissipation involving vortexlike excita-
tions has been previously observed in experiments with
liquid He [14,15], superconductors [16], and in a simply
connected condensate [17].

The critical velocity in simply connected condensates
has been measured previously by moving a defect created
by a localized optical potential [17–19]. When the velocity
of the defect was high enough, excitations and heating
were observed. In contrast to this earlier work, we create
a quantized, persistent flow around a multiply connected
(toroidal) condensate and study the decay of that flow in

the presence of a stationary barrier, as a function of barrier
height and condensate atom number.
In previous experiments [20], we created persistent cur-

rents in a harmonic magnetic potential pierced by a repul-
sive optical potential. Relative drift between these
potentials limited the flow lifetime to � 10 s. This moti-
vated the construction of an all-optical trap which supports
persistent currents for up to 40 s and allows us to carefully
study the stability of superflow.
To create a toroidal condensate, 32S1=2jF ¼ 1;

mF ¼ �1i 23Na atoms are cooled almost to degeneracy
in a magnetic trap and then transferred into an optical
dipole trap created by the intersection of red-detuned
(1030 nm) ‘‘sheet’’ and ‘‘ring’’ beams [Fig. 1(a)]. The
horizontal sheet beam has a vertical (horizontal) 1=e2

half width of � 9 �m (� 400 �m) and provides vertical
confinement. The vertical ring beam is Laguerre-Gaussian
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FIG. 1 (color). Experimental configuration. (a) Schematic of
the toroidal optical dipole trap formed at the intersection of two
red-detuned beams: a horizontal ‘‘sheet’’ beam and a vertical
Laguerre-Gaussian beam (LG1

0) with a ring-shaped intensity

maximum. A pulsed pair of Raman beams (large downward
arrows) copropagating with the LG trapping beam creates cir-
culation in the condensate. (b) Energy level diagram for the
Raman transition: jF ¼ 1; mF ¼ �1i ! jF ¼ 1; mF ¼ 0i. One
Raman beam carries @ orbital angular momentum per photon
(LG1

0), the other carries none (Gaussian); the condensate is

transferred to a quantized (l ¼ 1) circulating state. (c) False-
color absorption image showing the normalized column density
of a condensate in the trap, viewed from above. Arrows: Raman
beam polarizations and magnetic bias.
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(LG1
0) and confines the condensate to its � 20 �m radial

intensity peak, generating a toroidal potential minimum.
With the atoms in the optical trap, the beam intensities are
ramped down to force evaporative cooling. At the end of
the ramp, the trap depth is� 700 nK, with trap frequencies
!z=2�¼550Hz (vertical) and !r=2� ¼ 110 Hz (radial).
This produces a toroidal condensate of up to 3� 105 atoms
with a chemical potential �0 of up to h� 1200 Hz and
temperature <10 nK (no discernible noncondensed frac-
tion). The azimuthal variation of the potential minimum is
less than h� 100 Hz, as shown by the smooth condensate
density profile in Fig. 1(c).

The condensate is initially nonrotating [21]. Superfluid
circulation around any closed path must be quantized, such
that the wave function has a 2�l phase winding (l 2 Z).
We create circulation by transferring quantized angular
momentum from optical fields during a Raman process
[22]. The copropagating Raman beams, detuned 2.3 GHz
below the D2 transitions, are in two-photon resonance with
the j1;�1i ! j1; 0i transition [Fig. 1(b)]. They have or-
thogonal linear polarizations, parallel and perpendicular to
the horizontal magnetic bias field [Fig. 1(c)]. The nonlinear
Zeeman shift from the 0.5 mT field applied during the
interaction prevents coupling to j1; 1i.

The angular momentum change of the condensate is
determined by the spatial mode of the Raman beams.
With one beam Gaussian, and the other in an LG1

0 spatial

mode carrying @ orbital angular momentum per photon, the
Raman process coherently transfers the condensate to the
l ¼ 1 circulating state [20,22,23]. With good mode match-
ing and an optimized Raman � pulse (� 100 �s), we
achieve a minimum transfer efficiency of 90%, with only
a few percent atom loss due to spontaneous scattering.
Residual atoms in j1;�1i after the Raman pulse are
quickly removed from the trap by transferring them to
j2;�2i with a microwave pulse, then ejecting them from
the trap with resonant imaging light (see below).

Circulation is detected by releasing the condensate from
the trap and imaging the density distribution after several
milliseconds time of flight (TOF) [24]. If the condensate is
not rotating, the central hole closes after a short time.
When a rotating condensate is released, the angular veloc-
ity of the flow prevents complete closure. The persistence
of a central hole after sufficiently long TOF is the signature
of circulation in the ring [see Fig. 2(b) insets]. The appar-
ent size of the hole at a given time after release is related to
the azimuthal flow velocity prior to release and the velocity
of the mean-field-driven inward expansion. For a rotating
condensate released directly from our narrow annular trap,
the hole size is below our imaging resolution for experi-
mentally accessible TOFs (< 15 ms). To make the signa-
ture of circulation visible earlier, we first adiabatically
reduce the ring beam intensity by 90% over 100 ms, then
release the condensate suddenly (< 1 �s). We use this
procedure, followed by 6 ms TOF, to detect circulation.

The Raman beams used to create circulation also cause
small-amplitude oscillations in the radial density profile,
due to small dipole forces and atom loss. These oscillations
have no observable impact on the stability of the circulation,
and damp out after<0:5 s. We add a wait time� 3 s after
the Raman transfer to ensure complete damping. The cir-
culation is extremely robust and continues until losses due
to background collisions reduce �0 to the level of the
nonuniformities in the trap. For a 30 s vacuum-limited
1=e condensate lifetime, �0 remains high enough for flow
to survive up to 40 s.
After the � 3 s wait time, we insert a barrier into the

path of the flow and study the stability of the circulation.
The repulsive barrier is created with a blue-detuned
(532 nm) laser beam focused to an elliptical spot. The
major axis (15 �m 1=e2 radius) is aligned in the radial
direction of the toroid, and the minor axis (4:3 �m 1=e2

radius) is parallel to the flow, and exceeds the bulk
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FIG. 2 (color). (a) Flow survival as a function of chemical
potential �0 for two barrier heights: �=h ¼ 650 Hz (upper,
blue) and �=h ¼ 780 Hz (lower, red). Presence or absence of
flow for a single condensate is shown by closed circles. Open
circles are the average of data within the bins (vertical lines),
representing the flow survival probability (Pflow) of each bin. A
critical chemical potential �c for stable flow is found from a
sigmoidal fit (solid lines) to the data for each �. Inset: In situ
absorption image of a condensate near �c (�0=h ¼ 870 Hz,
�=h ¼ 650 Hz). (b) Values of �c at different �, determined by
fits as described in (a). The open circles correspond to the data
in (a). The vertical error bars reflect the width of the sigmoidal
fit,�2�w. The horizontal error bars are the 20 Hz uncertainty in
calibrating �. The dotted line is a linear fit to the data, with slope
1.6(2). Insets: Typical TOF absorption images showing the
presence (top left) and absence (bottom right) of circulation.
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condensate healing length (� ¼ @=
ffiffiffiffiffiffiffiffiffiffiffi

2m�
p

< 1 �m). The
barrier depletes the local density of the condensate n, as
seen in the inset in Fig. 2(a). The reduction in density
increases the local flow velocity (roughly v / 1=n).
Lowering the density also lowers the local interaction
energy, �l / n, decreasing the local sound speed. To study
flow stability, we ramp up the barrier intensity over 100 ms
to a chosen barrier height �, hold for 2 s, then ramp back
down in another 100 ms. The presence or absence of flow is
then detected in TOF as described above. This procedure is
repeated many times for the same �, varying the total
number of atoms (by varying the initial condensate number
and/or the wait time) until the range of atom number is well
sampled. We then change� and repeat the procedure. If the
barrier is not applied, the flow always survives, so we can
attribute the decay of the flow to the effect of the barrier.
Separate measurements indicate that the flow decays in
<100 ms.

The analysis of flow stability depends on in situ obser-
vations of the condensate density profile in the presence of
the barrier and from TOF images after the barrier has been
removed. From TOF images we determine whether the
flow survived [insets of Fig. 2(b)] and measure the con-
densate atom number N. For an annular condensate with

a Thomas-Fermi profile, the chemical potential �0 ¼
@ �!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=�ÞðNas=RÞ
p

, where �! � ffiffiffiffiffiffiffiffiffiffiffiffi

!z!r
p

, as is the

s-wave scattering length, and R is the radius of the ring.
This calculation does not include small corrections
(� 6%) due to the azimuthal nonuniformity of the poten-
tial minimum and displacement of atoms from the barrier
region, corrections which are less than the systematic
uncertainty in determining �0 (� 10%).

We calibrate � by taking in situ images of the conden-
sate and measuring the reduction in column density at the
location of the barrier [see Fig. 2(a) inset]. Because of the
high optical depth (up to 10), we use a partial transfer
imaging technique [25,26], in which a precise fraction
(ranging from 15%–40%) of the atoms is transferred to
the j2;�1i state using a microwave pulse, then resonantly
imaged on the S1=2F ¼ 2 ! P3=2F ¼ 3 transition. The

local interaction energy �l can be found from the mea-
sured column density ~n. For data where �l < @!z,
we assume the axial density profile is that of the har-

monic oscillator ground state, with �l ¼ ½ð16�Þð@!zÞ�
ð@2a2s ~n2=mÞ�1=2. For data where �l > @!z, we assume

a Thomas-Fermi profile, with �l ¼ ½ð9�2=2Þð@!zÞ2 �
ð@2a2s ~n2=mÞ�1=3. When measuring the column density at
the barrier, we correct for loss of contrast due to the
imaging resolution, which reduces the apparent depth of
the density depletion by� 15%. We take � to be�0 ��l.

The solid circles in Fig. 2(a) show the flow survival or
decay for single experimental runs, plotted against �0 for
that run. The open circles are the average of the solid
circles within the bins shown. The upper plot (blue) is
for �=h¼650Hz, the lower (red) shows �=h ¼ 780 Hz.

At low �0, the flow is arrested by the barrier. At high �0

the flow survival probability becomes unity. In between,
the survival probability increases from zero to one over a
narrow critical region. We characterize this critical region
for each � by fitting a sigmoidal function Pð�0Þ ¼ 1=

ð1þ eð�c��0Þ=�wÞ to each unbinned data set, where the
parameters �c and �w are the critical chemical potential
and the sigmoidal width, respectively [27]. The observed
width is consistent with observed shot-to-shot variations in
the trapping potential.
Figure 2(b) shows the values of �c extracted from the

fits of the data for seven different �. Over this range, �c

increases approximately linearly with �, with a slope
greater than unity. The functional dependence and slope
are determined in a nontrivial way by trap geometry and
the condition of quantized circulation around the ring. The
experimental results are consistent with expectations for
our geometry.
The physics behind Fig. 2 is more apparent when the

data are recast in terms of flow velocity and sound speed at
the barrier. The barrier thickness is greater than �, so we
expect the flow to become unstable when the velocity in the
barrier region exceeds some local critical velocity vc.
The flow velocity at the barrier cannot be determined just
from �0 and �. The requirements of quantized circulation
(global), and flow conservation (local), make it necessary
to self-consistently calculate the velocity distribution
around the entire ring. We do this by integrating the
in situ column density radially to make a 1D approximation
of the density profile then solving for the velocity distri-
bution of an l ¼ 1 circulation state.
The critical velocity is determined by the lowest energy

excitations allowed for the system [9]. For phononlike
excitations in the ring, that velocity should be approxi-
mately the local sound speed in the barrier region [28].
We make an initial estimate for the critical velocity from

the local interaction energy at the peak of the barrier, cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

�l=m
p

. However, the inhomogeneous (nearly parabolic)
radial density profile lowers the effective sound speed to

ceff ¼ cl=
ffiffiffi

2
p

for waves traveling azimuthally along the
annulus [29]. Figure 3 shows the observed critical velocity
normalized to ceff , as a function of ceff . As seen in previous
work with finite inhomogeneous atomic condensates
[17–19], the observed critical velocity is less than the sound
speed. For all tested values of �, vc=ceff � 0:6 and is
independent of ceff to within the experimental uncertainty.
In this experiment, flow is confined to a narrow, flattened

channel, raising the possibility that vortexlike excitations
are responsible for the observed critical velocity.
Numerical simulations [30] with a model condensate simi-
lar to ours, but in an l ¼ 8 circulation state, showed
vortices traversing the barrier region when the barrier
was raised above a critical level. This suggests that for
our l ¼ 1 circulation state a similar decay mechanism
could be at work. For vortexlike excitations in our
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quasi-2D geometry, the (Feynman) critical velocity vF can
be estimated from energetic arguments [13] to be vF ¼
ð@=mdÞ lnðd=aÞ, where d is the channel width and a is the
vortex core size. We take d to be the Thomas-Fermi width
and a the healing length, both calculated for the barrier
region. Both d and a depend on ceff via the interaction
energy �l. The gray band in Fig. 3 is an estimate of the

probable value of vF=ceff with cl � ceff � cl=
ffiffiffi

2
p

. While
this calculation is in surprisingly good agreement with our
data, a more complete model including geometric factors is
needed to accurately calculate the energy of a vortex-
antivortex pair in the barrier region.

We have presented the first realization of a closed atom-
tronic circuit, demonstrating precise control both in induc-
ing and arresting superfluid flow. We have clearly
identified the critical velocity where flow stops, and our
observations are in agreement with theoretical predictions
in which vortex-antivortex excitations are the decay
mechanism for the system. In future work, we plan to
investigate the role of barrier geometry, condensate tem-
perature, and dimensionality in determining the critical
velocity and decay mode. In addition, rotating a barrier
around the ring (oscillating it azimuthally) would be analo-
gous to magnetically biasing (driving an ac current in) a
SQUID. This work constitutes a significant step toward
realizing such an atomic SQUID analog.
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University, SE-901 87, Umeå, Sweden.
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