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We study a simple swarming model on a two-dimensional lattice where the self-propelled particles

exhibit a tendency to align ferromagnetically. Volume exclusion effects are present: particles can only hop

to a neighboring node if the node is empty. Here we show that such effects lead to a surprisingly rich

variety of self-organized spatial patterns. As particles exhibit an increasingly higher tendency to align to

neighbors, they first self-segregate into disordered particle aggregates. Aggregates turn into traffic jams.

Traffic jams evolve toward gliders, triangular high density regions that migrate in a well-defined direction.

Maximum order is achieved by the formation of elongated high density regions—bands—that transverse

the entire system. Numerical evidence suggests that below the percolation density the phase transition

associated with orientational order is of first order, while at full occupancy it is of second order.
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Self-propelled particle (SPP) systems are found at all
scales in nature. Examples in biology range from human
crowds [1] and animal groups [2,3], down to insects [4,5],
bacteria [6], and even to the microcellular scale with, e.g.,
the collective motion of microtubules driven by molecular
motors [7]. SPP systems are not restricted to living sys-
tems. There are examples in nonliving matter, such as, for
instance in driven granular media [8–10]. Interestingly, the
statistical properties of the large-scale self-organized pat-
terns emerging in SPP systems depend only on a few
microscopic details: the symmetry associated to the self-
propulsion mechanism of the particles, which can be either
polar [11–13] or apolar [14], the symmetry of the velocity
alignment mechanism, which can be either ferromagnetic
[11,12] or nematic [13,14], and very importantly, the pres-
ence or absence of volume exclusion effects, as we are
going to discuss here. In addition, the nature of the sup-
porting space where the particles move plays also a crucial
role: the dimension of the space, and whether this space is
continuous [11–14] or discrete [15–18].

In this Letter, we focus on polar SPPs moving on a two-
dimensional lattice that align their orientation, respec-
tively, their moving direction, via a local ferromagnetic
alignment mechanism. We explicitly model volume exclu-
sion effects: nodes can be occupied at most by one particle.
We show that such effects introduce a coupling between
particle speed, local density and local alignment that lead
to a surprisingly rich variety of self-organized spatial
patterns unseen in previous swarming models. As particles
exhibit an increasingly higher tendency to align to neigh-
bors, the system passes through three distinct phases. For
weak alignment strength, the system exhibits orientational
disorder, while particles self-segregate, Fig. 1(a). Within
this initial phase, there is a transition from a spatially
homogeneous to an aggregate phase. The onset of

orientational (polar) order marks the beginning of the
second phase which is characterized by the emergence of
locally ordered, high density regions: traffic jams,
Fig. 1(b). As the tendency to align is enhanced, traffic
jams evolve toward triangular high density aggregates
that migrate in a well-defined direction. We refer to these
dynamical traffic jams as gliders, Fig. 1(c). The third phase
emerges when the particles self-organize into highly or-
dered, elongated, high density regions: bands, Fig. 1(d). In
contrast to the traveling bands observed in off-lattice SPP
models with ferromagnetic alignment [12], these bands are
formed by particles aligned to the long axis of the band and
are rather static.
We find evidence that the phase transition to orienta-

tional order is discontinuous below the percolation thresh-
old. When the lattice is fully occupied, the system reduces
to the classical planar Potts model and the phase transition
to orientational order is undoubtedly of second order
[19,20]. Previous lattice swarming models were found to
exhibit a continuous phase transition from a homogeneous
to a condensed phase in 1D [17,18], while in 2D, both, first
and second-order transitions to orientational order have
been claimed. Bussemaker et al. reported a second-order
transition in a cellular automaton model with 4 moving
directions [15], while Csahók and Vicsek found, for a
lattice-gas model with 6 moving directions, a weakly-
first-order transition to collective migration [16]. Here we
show that all these phenomena occur in a minimal 2D
lattice swarming model, but where in contrast to previous
models the system dynamics is dominated by volume
exclusion effects that lead to a completely novel spatial
self-organization of particles.
Model.— Particles move on a two-dimensional lattice

with periodic boundary conditions, and have four possible
orientations: up, down, left, and right, whose associated
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vectors are v1, v2, v3, and v4, respectively. The state of a
particle is given by its position on the lattice and its
orientation. As it will become clear below, the orientation
of a particle fully determines its moving direction. The
particles are able to perform two actions: (i) they can
change their orientation, and (ii) they can migrate in the
direction given by their orientation. These actions have
associated transition rates which specify the average num-
ber of events per time unit. Let us start out with the
reorientation transition rate TR that a particle at x with
orientation v turns its orientation into direction w:

TRððx; vÞ ! ðx;wÞÞ ¼ exp

�
g

X

y2AðxÞ
hwjVðyÞi

�
; (1)

where the sum runs over the nearest lattice neighbors of x,
represented by AðxÞ. The vector VðyÞ returns the orienta-
tion of the particle placed in node y, if there is any, and the
null vector otherwise. The symbol h:j:i indicates the inner
product between two vectors, while g is a parameter which
controls the alignment sensitivity. For positive g, Eq. (1)
defines a stochastic ferromagnetic alignment mechanism.
As result of this alignment, first nearest neighbor particles
tend to be aligned.

The migration rate is defined in the following way:

TMððx; vÞ ! ðy ¼ xþ v; vÞÞ

¼
�
v0 if node y is empty

0 if node y is occupied:
(2)

Thus, a particle at position x and pointing in direction v
migrates to the neighboring node y ¼ xþ v with a tran-
sition rate v0 as long as the node at y is empty. If the y node
is occupied, the particle will not jump. The only action that
is allowed to the particle in this situation is to change its
orientation.

At this point, it is important to understand how this
continuous-time process is simulated. Let us assume that
at time t0 the system is in a given state. Then, we compute
the time at which the next event will take place in the
system, i.e., we calculate t1. Now we have to decide which
is the event that will take place at time t1. We choose at
random one out of all the possible events that could take
place, but we weight each of these events according to their

associated transition rate, Eqs. (1) and (2). This procedure
is an adaption of the classical Gillespie algorithm [21] to
interacting particle systems [22].
Results.— We start by fixing the migration rate v0 and

particle density d, and use g as control parameter. The
degree of orientational order in the system at time t is
characterized by the (global) orientation mðtÞ ¼
ð1=NÞjPxVðxÞj, where N is the total number of particles
in the system, the sum runs over all lattice sites, andVðxÞ is
defined as above. Figure 2 shows the behavior of the mean
orientation hmi as function of the alignment sensitivity g,
with h. . .i a temporal average taken once the system
reaches the steady-state after a short transient. The system
exhibits a phase transition to orientational order above a
critical g� for all densities, as long as v0 > 0. Here we
focus on 0< d< dp, where dp refers to the (site) perco-

lation threshold in a 2D (square) lattice, dp � 0:59. The

system exhibits three phases with g, labeled I, II, and III by
increasing alignment sensitivity g. Phase I corresponds to
g < g� and is characterized by exhibiting no macroscopic
orientational order. Figure 3 shows that within phase I there
is a dynamic phase transition from a spatially homogene-
ous to an aggregate phase as g is increased. The degree of
aggregation is characterized by the average cluster size hki,

0 0.5 1 1.5 2
g

0

0.2

0.4

0.6

0.8

1

<
m

>

L = 49
L = 97
L = 193

(a)

(b)

(c)

(d)

traffic jams
&

oriented bands

gliders

strong clustering

g* g
b

)III()I(

(II)

FIG. 2 (color online). Mean orientation hmi vs the alignment
sensitivity g for systems with density d ¼ 0:3 and migration rate
v0 ¼ 100. Simulations were carried out for 2� 107 time steps.
The different curves correspond to different system sizes L. The
boundary between phase I and II, g�, and between phase II and
III, gb, are indicated by the vertical dashed lines. (a) to (d) refer
to the simulation snapshots shown in Fig. 1.

FIG. 1 (color online). Example of self-organized spatial patterns: (a) disordered aggregates, (b) traffic jams, (c) gliders, and
(d) bands. Particle orientation is indicated by the orientation of the small triangles, and is also color-coded: right (red), left (black),
down (green), and up (blue). Parameter values are indicated in Fig. 2.
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which is computed as the temporal average of hki ¼P
kkpðk; tÞ, with pðk; tÞ ¼ knkðtÞ=N, where nkðtÞ is the

number of clusters of mass k at time t and N ¼ dL2 is
the number of particles in the system. The figure shows that
there exists a critical value ga above which a phase tran-
sition to aggregation occurs, with ga < g�. As g ap-
proaches g�, more than 85% of the particles in the
system form a large aggregate. The transition point be-
tween phase I and II is at g�, where the curves hmiðg; LÞ for
different system sizes Lmeet. Interestingly, g� seems to be
independent of the density d, as confirmed with simula-
tions for various system sizes with density d ¼ 0:2, 0.3,
and 0.4 (data not shown). Moreover, g� coincides with the
critical point for the full occupancy problem, i.e., d ¼ 1.
Figure 4(a) shows time series of mðtÞ for values of g close
to g�. The order parameter mðtÞ exhibits fluctuations be-
tween high and low values. Low m-values correspond to
the appearance of round traffic jams, while high values
correspond to elongated traffic jams where two directions
dominate over the other two. Traffic jams results from the
jamming of four particle clusters attempting to move to
the left, right, upward, and downward, respectively.
Fluctuations are due to the competition between these
four clusters. Figure 4(b) shows that the distributions
pðmÞ obtained from the mðtÞ time series for values of g
close to g� do not exhibit a Gaussian shape as expected for

a second-order transition, but rather a bimodal distribution
(the arrow indicates the second peak) as expected for first-
order transitions. The coexistence of several particle con-
figurations (or ‘‘phases’’) exhibiting different degrees of
ordering, i.e., values of m, is evident for values of g deep
into phase II. Figure 4(c) shows that mðtÞ jumps between
well-defined values corresponding to different spatial pat-

terns. Values of mðtÞ � 1=
ffiffiffi
2

p
are associated to gliders,

while higher values of mðtÞ correspond to bands. Lower
values of mðtÞ are due to the presence of traffic jams.
Gliders are dynamical traffic jams moving backwards
with respect to their average orientation. Their presence
affects the temporal evolution of the center of mass of the
system, xcmðtÞ, which exhibits ballistic motion whenever
there is a glider, while otherwise is Brownian. As result of
this, the average speed of the center of mass hVcmi peaks at
values of g where gliders are more stable [23]; see Fig. 5.
Gliders are remarkably different from traffic jams observed
in 2D traffic models [24], arguably due to the presence of
the alignment mechanism, Eq. (1). How frequently gliders
appear and for how long they survive, depends on the value
of g and L. For example, for g ¼ 1:4, mðtÞ displays ex-
cursions from low to high values that reflect the fact the
system alternates between traffic jams and gliders. For an
illustration of this dynamics, see [25]. For g > gb, i.e., in
phase III, the only stable configurations is a band. In
contrast to g�, gb is highly dependent on L.

FIG. 3 (color online). Phase transition to aggregation (phase I).
(a) to (d) correspond to simulation snapshots whose value of g is
indicated in (f) (other parameters as in Fig. 2). The average
cluster size hki normalized by the total number of particles, dL2,
as function of g is shown in (e) for various system sizes, and in
(f) for various densities.

FIG. 4 (color online). Phase transition to orientational order.
Time series mðtÞ, histogram, and typical spatial configurations
for phase II, g� < g � gb. Letters in (c) indicate simulation
snapshots shown in (d)–(f). Parameters as in Fig. 2.
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Discussion.— In the limit of full occupancy, d ¼ 1,
particles are frozen in their positions and the only action
allowed to them is reorientation. The system defined by
Eqs. (1) and (2) becomes an equilibrium system in this
limit, whose order is again characterized bymðtÞ. Since, by
definition, there are only four possible orientations, we can
safely claim that the model reduces to a 4-state planar Potts
model [19]. It has been shown that this model can be
reduced to the standard 2-Potts model [20]. In two-
dimensions, the standard q-Potts model exhibits a continu-
ous transition for q � 4, and a discontinuous one for q > 4
[19]. Thus, our model exhibits a second-order transition for
d ¼ 1, as confirmed via simulations (data not shown). For
v0 > 0 and d < 1, we are in a pure nonequilibrium sce-
nario. The migration rule, Eq. (2), breaks detailed balance
and prevents us from writing down a free energy.
Nevertheless, it is worth to compare our system with its
equilibrium counterpart, the diluted Potts model with an-
nealed vacancies. If we represent the absence of particles
in a lattice position with an extra vector direction, we end
up with a 5-Potts system with full occupancy, instead of a
diluted 4-Potts system. In consequence, according to what
was said above, the transition would be first-order. The
argument applies to the standard Potts model and assumes
vacancies are in thermal equilibrium, which is not true for
Eq. (2). Nevertheless, it helps to realize that a discontinu-
ous dynamic phase transition is quite possible in our non-
equilibrium system.

In summary, we have shown through a minimal model
that volume exclusion effects, when they are allowed to
stop particle motion, can lead to a surprisingly rich variety
of self-organized patterns. Such effects introduce a cou-
pling between local density, local orientation and particle
speed that strongly affects the large-scale behavior of the
system, with the jamming of particles playing a dominant
role. This coupling is present in many real systems as in
gliding bacteria, animal groups, etc. Certainly, several
features of the self-organized patterns described here de-
pend on the discrete nature of the model. Nevertheless, we
expect similar phenomena to emerge in off-lattice, contin-
uum symmetry systems. For instance, static traffic jams are
probably a robust property of all systems where stagnation
can occur. Here we have also learned that the jamming of

self-propelled particles can lead to unexpected self-
organized structures in two-dimensions like dynamical
traffic jams, e.g., gliders. The presence of an alignment
mechanism induces (local) orientational order, and pro-
vided particles are oriented, density waves of stagnated
particles should emerge. The results reported here are a
first step toward an understanding of the possible phe-
nomena that such a coupling may induce.
We thank A. Greven and C. F. Lee for useful comments.
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FIG. 5 (color online). (a) average speed of the center of mass
hVcmi as function of g. (b) Trajectories of the center of mass for
two different values of g.
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