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A linearized tensor renormalization group algorithm is developed to calculate the thermodynamic

properties of low-dimensional quantum lattice models. This new approach employs the infinite time-

evolving block decimation technique, and allows for treating directly the transfer-matrix tensor network

that makes it more scalable. To illustrate the performance, the thermodynamic quantities of the quantum

XY spin chain as well as the Heisenberg antiferromagnet on a honeycomb lattice are calculated by the

linearized tensor renormalization group method, showing the pronounced precision and high efficiency.
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Since the appearance of White’s density-matrix renor-
malization group (DMRG) theory [1], the numerical re-
normalization group (RG) approaches have achieved great
success in studying low-dimensional strongly correlated
lattice models [2]. In the past few years, a number of
RG-based methods, e.g., the coarse-graining tensor renor-
malization group (TRG) [3–5], projected entangled pair
states [6], entanglement renormalization [7], the infinite
time-evolving block decimation (iTEBD) [8], finite-
temperature DMRG [9,10], etc., have been proposed. In
spite of the great success in one- and two-dimensional
(1D and 2D) lattice models, it is still quite necessary to
develop new algorithms to improve the accuracy and effi-
ciency of numerical calculations for strongly correlated
systems.

In this Letter, we propose a new algorithm to simulate
the thermodynamics of low-dimensional quantum lattice
models. Our strategy is first to transform the
D-dimensional quantum lattice model to a (Dþ 1)-
dimensional classical tensor network by means of the
Trotter-Suzuki decomposition [11], and then to decimate
linearly the tensors following the lines developed in the
iTEBD scheme to obtain the thermodynamics of the origi-
nal quantum many-body system. This algorithm is so
dubbed as the linearized TRG (LTRG). As is known, the
previous real space TRG approach deals with the 2D tensor
network with exponential decimation in the coarse-
graining procedure, which was shown effective for both
2D classical and quantum lattice models [4,5,12–15]. For
the best illustration of the algorithm and performance of
the LTRG approach, we take the exactly solvable 1D
quantum XY spin chain as a prototype. The results show
that the precision of the LTRG method is comparable with
that of the transfer-matrix renormalization group (TMRG)
[16], the method that is quite powerful for simulating the
1D quantum lattice models at finite temperatures (e.g.,
Refs. [17,18]). To demonstrate its scalability, a LTRG

result with remarkable precision for a 2D spin-1=2
Heisenberg antiferromagnet on a honeycomb lattice is
also included.
Let us start with the Hamiltonian of a 1D quantum

many-body model given by

H ¼ XN
i¼1

hi;iþ1 ¼ H1 þH2; H1 ¼
XN=2

i¼1

h2i�1;2i;

H2 ¼
XN=2

i¼1

h2i;2iþ1;

(1)

where N (even) is the number of sites. By inserting 2K

(large K) complete sets of states fj�j
i igð�j

i ¼ 1; � � � ; DÞ
with i the site index and j the Trotter index, the partition
function of this model can be represented as

ZN ’ Tr½e��H1=Ke��H2=K�K

¼ X
f�j

i g

YK
j¼1

h�2j�1
1 . . .�2j�1

N je��H1=Kj�2j
1 . . .�2j

N i

� h�2j
1 . . .�2j

N je��H2=Kj�2jþ1
1 . . .�2jþ1

N i; (2)

where the periodic boundary conditions along both spatial
and temporal directions are assumed, i.e., �1

i ¼ �2Kþ1
i and

�j
1 ¼ �j

Nþ1. Since the terms within H1 (and H2) mutually

commute, Eq. (2) can be further decomposed as

ZN ’ X
f�j

i g

YN=2

i¼1

YK
j¼1

v�2j�1
2i�1

�2j�1
2i

;�2j
2i�1

�2j
2i
v�2j

2i
�2j
2iþ1

;�2jþ1
2i

�2jþ1
2iþ1

; (3)

where the transfer matrix, v�1�4;�2�3
�

h�1�4j expð��hi;iþ1=KÞj�2�3i, is a fourth-order tensor.

Obviously, the partition function, Eq. (3), can be viewed as
a classical transfer-matrix tensor network, as illustrated in
Fig. 1(a).
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The partition function can be obtained by summing over

all the intermediate states j�j
i i, namely, contracting all the

bonds � in the tensor network. This procedure is accom-
plished by first making a singular value decomposition
(SVD) of � tensors in the following way:

��1�2;�3�4
¼ XD2

x¼1

U�1�2;x�xV
>
x;�3�4

� XD2

x¼1

ðTaÞx;�1;�2
ðTbÞx;�3;�4

; (4)

where the diagonal matrix � collects D2 singular values,
and two auxiliary tensors ðTaÞx;�1;�2

� U�1�2;x

ffiffiffiffiffiffi
�x

p
and

ðTbÞx;�3;�4
� V�3�4;x

ffiffiffiffiffiffi
�x

p
are introduced for convenience.

After this transformation, the square tensor network be-
comes a hexagonal one with two third-order tensors Ta and
Tb, as depicted in Fig. 1(b). Then, one contracts the �
bonds encircled by the dashed oval lines between the last
two rows in Fig. 1(c), which leads to the two fourth-order
tensors

ðMaÞ�;t1;�;b1 ¼
XD
y¼1

ðTaÞ�;b1;yðTbÞ�;t1;y;

ðMbÞ�;t2;�;b2 ¼
XD
z¼1

ðTaÞ�;z;t2ðTbÞ�;z;b2 ;
(5)

which form a matrix product operator (MPO) lying in the
bottom line of the whole tensor network, that can also be
viewed as a ‘‘superket’’ in the operator Hilbert space [19].
Each horizontal bond betweenMa andMb is assigned with

a diagonal matrix �1;2. Finally, we obtain a tensor network

with brick wall structure as shown in Fig. 1(d).
Next, one can project the tensors Ta;b onto Ma;b succes-

sively. At each time, we project one row of tensors Ta and
Tb followed by updating Ma;b and �1;2. After two projec-

tions, the system evolves one Trotter step forward. This
procedure is illustrated in Fig. 2. One first contracts the �
bonds between M tensors and T tensors in Fig. 2(a) to
obtain a sixth-order tensor in Fig. 2(b)

Oy;�;b1;z;�;b2 ¼
X

x;t1;t2;�

ð�1Þ�ðMaÞ�;t1;�;b1ð�2Þ�ðMbÞ�;t2;�;b2

�ð�1Þ�ðTaÞx;t1;yðTbÞx;z;t2 ;
(6)

and then takes a SVD of theO tensors (after matricization).

Oy�b1;z�b2 ’
PDc

� Uy�b1;�ð�0
2Þ�V>

�;z�b2
, while keeping only

the largestDc singular values of �
0
2. One can define newM

tensors ðM0
aÞ�;y;�;b1 ¼ Uy�b1;�=ð�1Þ� and ðM0

bÞ�;z;�;b2 ¼
Vz�b2;�=ð�1Þ�, and update the horizontal bonds with �0

2.

After these operations, the last row of the tensor network is
half updated as shown in Fig. 2(c). To project the next row
of tensors, one can simply exchangeMa andMb as well as
�1 and �2 in Eq. (6). These two successive projections
make up a full Trotter step �, as illustrated from Fig. 3(a) to
Fig. 3(c). In each Trotter step, the transfer-matrix tensor
network is decimated linearly with only OðDcÞ singular
values discarded, which improves greatly the efficiency
compared with the original TRG approach where OðDn

cÞ
(n ¼ 2 for honeycomb network) ones are discarded in the
coarse-graining procedure [20].
In order to avoid the divergence in the imaginary time

evolution, one has to normalize all the singular values in �
with its largest one ni in ith step. After projecting all the T
tensors at inverse temperature �, one is left with the matrix
product density operator of the present system. It consists
of fourth-orderM tensors [see Fig. 3(c)], each of which has
two legs with physical indices t and b in the Trotter
direction, that can be further traced out due to the periodic
boundary condition. Thus, we obtain a 1D matrix product
extended in the spatial direction, where the matrices are
labeled as cMa;b as shown in Fig. 3(d). It is convenient to

assume the number of matrices is 2p. To get the trace of the

FIG. 1 (color online). (a) A transfer-matrix tensor network,
where each bond denotes the � index in Eqs. (2) and (3). (b) A
local transformation of a fourth-order tensor into two third-order
tensors through a singular value decomposition (SVD).
(c) Transform the transfer-matrix tensor network to a hexagonal
one. (d) By contracting the intermediate bonds marked by
dashed ovals in (c), one gets a brick wall structure with the
fourth-order tensors in the bottom line.

FIG. 2 (color online). A local evolution of the tensors by
contraction and SVD. (a) Contract the intermediate bonds;
(b) obtain a sixth-order tensor O; and (c) calculate the singular
value decomposition (SVD) of O, and update the tensors Ma;b

and �. The above manipulation has a computational cost that
scales as OðD6D3

cÞ.
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product of these 2p matrices, one can contract the neigh-
boring matrices pairwise to obtain a new product of
2p�1 matrices, each of which should be normalized by
the absolute value of its largest elements to avoid diver-
gence. This contraction procedure is represented in
Figs. 3(d)–3(g). After p steps, the 2p matrices shrink to a
single one, of which the trace can be easily calculated. In
each coarse-graining step, all the normalization factors
denoted by mj with j ¼ 1; � � � ; p need to be collected for

the calculation of physical quantities, e.g., the free energy
per site f at inverse temperature � ¼ K� can then be
determined by the normalization factors nj’s and mj’s

f ¼ � 1

�L
ln

� Y2K�2

i¼1

ðniÞL=2
Yp
j¼1

ðmjÞL=2j
�

¼ � 1

K�

� X2K�2

i¼1

lnni
2

þ Xp
j¼1

lnmj

2j

�
: (7)

In the above descriptions, we illustrate the LTRG algo-
rithm by first decimating the tensors along the Trotter
direction, and then contracting the matrices in the spatial
direction. Alternatively, one can also perform the decima-
tion first in the spatial direction, and then do the matrix
contraction in the Trotter direction.

As an example, we are going to demonstrate the effi-
ciency of the LTRG algorithm by computing the free
energy and other thermodynamic quantities of the quantum
XY spin-1=2 chain with a local Hamiltonian hi;iþ1 ¼
�JðSxi Sxiþ1 þ Syi S

y
iþ1Þ in Eq. (1) with J ¼ 1. We take the

chain length to be 2100, which definitely reaches the ther-
modynamic limit.
In Fig. 4, we show the relative error of the free energy f

with respect to the exact solution, i.e., �f ¼ jðf� fexactÞ=
fexactj, for different Trotter steps � ¼ 0:1, 0.05, 0.02, 0.01.
We observe that the accuracy is enhanced with decreasing
�, as well as increasing Dc. Owing to the close relation
between iTEBD and DMRG, the truncation parameter Dc

plays a role similar to the number of states kept M in the
TMRGmethod. As shown in Fig. 4, we compare the LTRG
results to those of TMRG, both of which show the same
accuracy for � ¼ 0:1 and 0.05. It is also noticed that the
relative errors saturate rapidly with increasing Dc, imply-
ing that the errors at high temperatures (e.g., T > 0:2J)
mainly originate from the Trotter-Suzuki decomposition.
In order to check the truncation error, the LTRG algorithm
is also tested at very low temperatures. In Fig. 5, the
temperature is down to T ¼ J=120 with a Trotter step
� ¼ 0:05. As shown in Fig. 5(a), the accuracy of low T
results is remarkably improved by increasing Dc, and the
relative error �f ’ 7� 10�6 at � ¼ 120 for Dc ¼ 150.
Besides the free energy, other thermodynamic quanti-

ties, such as the internal energy, can also be obtained.
There are at least two ways to get them, one can either
introduce some impurity tensors in the tensor network

FIG. 3 (color online). An successive projection of each row of
tensors onto the MPO in the bottom line [(a)–(c)]. After the
projection along the Trotter direction, by tracing out the physical
indices t and b of the MPO, one may get a 1D matrix product,
of which the trace can be obtained by a matrix RG procedure
[(d)–(g)].

FIG. 4 (color online). The relative error of the free energy per
site, �f, of the quantum XY spin chain at high temperatures. �f
converges rapidly with Dc, and the lines with Dc ¼ 100 and 150
coincide with each other (� ¼ 0:05, 0.02). In addition, the TMRG
results (� ¼ 0:1, 0.05) are also presented for a comparison.

FIG. 5 (color online). LTRG and TMRG results of the quan-
tum XY spin chain. (a) Relative error of the free energy per site
�f. (b) The energy per site e. The inset shows the variation of
ðe� e0Þ=e0 with inverse temperature � for various Dc.
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(see, for instance, Ref. [8]), or do a numerical differentia-
tion of free energy with respect to temperature. Both ways
are found to have a similar accuracy. In Fig. 5(b), the
energy per site, e, is presented. We apply the LTRG algo-
rithm to approach the ground state energy e0, and find the
difference ðe� e0Þ=e0 is about 10�4 at � ¼ 120 for Dc ¼
150, suggesting that the LTRG result is very close to the
exact solution. The TMRG results with various M (up to
M ¼ 200) are also included in Fig. 5 for a comparison. The
relative errors for the free energy and internal energy are
found to be of the same order down to � ¼ 120 for both
approaches.

The specific heat of the quantum XY spin chain is also
calculated, as shown in Fig. 6(a). The LTRG results agree
quite well with the exact solution both at high and low
temperatures. As indicated in the inset, the accuracy will be
enhanced by increasing Dc. For Dc ¼ 150, the LTRG
results coincide with the exact solution down to very low
temperature (T=J ’ 0:008). The TMRG results with states
M ¼ 200 are also included, showing that both numerical
methods have the comparable accuracy.

To examine the scalability of the LTRG algorithm, we
also calculate the energy per site of a 2D spin-1=2
Heisenberg antiferromagnetic model on a honeycomb

lattice, whose Hamiltonian is H ¼ J
P

hi;ji ~Si � ~Sj þ
hs
P

ið�1ÞjijSzi , where ð�1Þjij denotes the parity of the
lattice and hs is a staggered magnetic field, as shown in
Fig. 6(b). A pronounced agreement between LTRG and
quantum Monte Carlo (QMC) results is clearly seen.

In summary, we have proposed a linearized TRG algo-
rithm to calculate the thermodynamic properties of low-
dimensional quantum lattice models, and obtained very
accurate results. The LTRG algorithm can be readily gen-
eralized to fermion and boson models, and also provides a
quite promising way to simulate the 2D quantum lattice
models without involving the negative sign problem.
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G. Vidal, Phys. Rev. B 78, 155117 (2008).
[9] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev.

Lett. 93, 207204 (2004).
[10] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401

(2005); S. R. White, Phys. Rev. Lett. 102, 190601 (2009);
E.M. Stoudenmire and S. R. White, New J. Phys. 12,
055026 (2010).

[11] M. Suzuki and M. Inoue, Prog. Theor. Phys. 78, 787
(1987); M. Inoue and M. Suzuki, Prog. Theor. Phys. 79,
645 (1988).

[12] M.-C. Chang and M.-F. Yang, Phys. Rev. B 79, 104411
(2009).

[13] W. Li et al., Phys. Rev. B 82, 134434 (2010).
[14] P. Chen, C. Y. Lai, and M. F. Yang, J. Stat. Mech. (2009)

P10001.
[15] W. Li et al., Phys. Rev. B 81, 184427 (2010).
[16] R. J. Bursill, T. Xiang, and G.A. Gehring, J. Phys.

Condens. Matter 8, L583 (1996); Xiaoqun Wang and
Tao Xiang, Phys. Rev. B 56, 5061 (1997); Tao Xiang,
Phys. Rev. B 58, 9142 (1998).

[17] B. Gu, G. Su, and S. Gao, Phys. Rev. B 73, 134427 (2006);
B. Gu and G. Su, Phys. Rev. Lett. 97, 089701 (2006); B.
Gu and G. Su, Phys. Rev. B 75, 174437 (2007); S.-S.
Gong, S. Gao, and G. Su, Phys. Rev. B 80, 014413 (2009);
S.-S. Gong et al., Phys. Rev. B 81, 214431 (2010).

[18] J. Sirker, Phys. Rev. B 73, 224424 (2006); J. Sirker, J.
Damerau, and A. Klumper, Phys. Rev. B 78, 235125
(2008); J. Sirker, Phys. Rev. B 81, 014419 (2010); J.
Sirker, Phys. Rev. Lett. 105, 117203 (2010).

[19] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205
(2004).

[20] We note that the present LTRG algorithm can also be
applied to evaluate the thermodynamics of 2D classical
models, achieving more accurate results than the coarse-
graining TRG algorithm.

[21] A. F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187
(2007).

FIG. 6 (color online). (a) Specific heat as a function of tem-
perature (T ¼ 1=�) of the quantum XY spin chain. The inset
shows the low temperature results for Dc ¼ 100 and 200, along
with the TMRG data (M ¼ 200) for a comparison. (b) Energy
per site of the 2D spin-1=2 Heisenberg antiferromagnet on a
honeycomb lattice for different staggered magnetic fields. The
QMC results are obtained by using the ALPS library [21].

PRL 106, 127202 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 MARCH 2011

127202-4

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://arXiv.org/abs/cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevLett.102.190601
http://dx.doi.org/10.1088/1367-2630/12/5/055026
http://dx.doi.org/10.1088/1367-2630/12/5/055026
http://dx.doi.org/10.1143/PTP.78.787
http://dx.doi.org/10.1143/PTP.78.787
http://dx.doi.org/10.1143/PTP.79.645
http://dx.doi.org/10.1143/PTP.79.645
http://dx.doi.org/10.1103/PhysRevB.79.104411
http://dx.doi.org/10.1103/PhysRevB.79.104411
http://dx.doi.org/10.1103/PhysRevB.82.134434
http://dx.doi.org/10.1088/1742-5468/2009/10/P10001
http://dx.doi.org/10.1088/1742-5468/2009/10/P10001
http://dx.doi.org/10.1103/PhysRevB.81.184427
http://dx.doi.org/10.1088/0953-8984/8/40/003
http://dx.doi.org/10.1088/0953-8984/8/40/003
http://dx.doi.org/10.1103/PhysRevB.56.5061
http://dx.doi.org/10.1103/PhysRevB.58.9142
http://dx.doi.org/10.1103/PhysRevB.73.134427
http://dx.doi.org/10.1103/PhysRevLett.97.089701
http://dx.doi.org/10.1103/PhysRevB.75.174437
http://dx.doi.org/10.1103/PhysRevB.80.014413
http://dx.doi.org/10.1103/PhysRevB.81.214431
http://dx.doi.org/10.1103/PhysRevB.73.224424
http://dx.doi.org/10.1103/PhysRevB.78.235125
http://dx.doi.org/10.1103/PhysRevB.78.235125
http://dx.doi.org/10.1103/PhysRevB.81.014419
http://dx.doi.org/10.1103/PhysRevLett.105.117203
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304

