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We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor. We

show that, when an odd number of subbands are occupied, the system realizes a nontrivial topological

state supporting Majorana modes. We study the topological quantum phase transition in this system and

calculate the phase diagram as a function of the chemical potential and magnetic field. Our key finding is

that multiband occupancy not only lifts the stringent constraint of one-dimensionality but also allows one

to have higher carrier density in the nanowire, and as such multisubband nanowires are better suited for

observing the Majorana particle. We study the robustness of the topological phase by including the effects

of the short- and long-range disorder. We show that there is an optimal regime in the phase diagram

(‘‘sweet spot’’) where the topological state is to a large extent insensitive to the presence of disorder.
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Looking for the elusive Majorana particles is one of the
most active and exciting current topics in all of physics [1].
Although originally proposed as a model for neutrinos,
the current search for Majorana particles is mostly taking
place in condensed matter or atomic systems [2,3] where
these mysterious particles, which are their own antiparti-
cles, emerge as effective quasiparticles from an underlying
fermionic Hamiltonian. Quite apart from the intrinsic in-
terest associated with the exotic Majorana particles, the
possibility that they can be used in carrying out fault-
tolerant topological quantum computation [4] by suitably
exploiting their non-Abelian braiding statistics gives an
additional technological impetus in the subject. It has
been known for a while [5–8] that, under suitable condi-
tions, Majorana particles could exist at the ends of 1D
nanowires in the presence of the appropriate superconduct-
ing (SC) pairing. Also, it has been recently shown that the
network of Majorana wires can be used for braiding [9] and
topological quantum computation [10]. Although the semi-
conducting (SM) nanowires [7,8] are promising candidates
for observing the Majorana, experimental realization of
these proposals is challenging because obtaining strictly
1D nanowires is a very demanding materials problem [11].
In this Letter, we establish that one dimensionality, i.e., the
occupancy of one only subband in the nanowire, is com-
pletely unnecessary, andMajorana particles can exist under
rather general and robust conditions even when several
subbands are occupied in the nanowire. More importantly,
we prove the remarkable counterintuitive result that the
multisubband system is, in fact, better suited in observing
the Majorana than the strict 1D limit. We carry out an
analytic theory establishing our main results and provide
support for it by independent numerical calculations. We
also study the robustness of the topological phase against

short- and long-range disorder and show that there is an
optimal parameter regime where the system is most stable
with respect to disorder. We believe that our results would
go a long way in providing the most suitable solid-state
system for the eventual observation of the Majorana
particles.
In this Letter, we propose to study Majorana physics in a

SM quantum well based on, for example, InAs-AlSb het-
erostructure [12]. The active system consists of a SM with
a strong spin-orbit interaction proximity-coupled with an
s-wave SC; see Fig. 1(a). The rectangular quantum well
has the dimensions Lz, Ly, and Lx as shown in Fig. 1(a).

We consider here the case of a strong confinement in the
ẑ direction such that Lz � Ly; Lx so that only the lowest

subband with respect to the ẑ-axis eigenstates is occupied.
Then, the single-particle Hamiltonian takes the usual form

FIG. 1 (color online). (a) Schematic plot of the quasi-1D
nanowire proximity-coupled with an s-wave SC. The rectangular
quantum well has the dimensions Lz, Ly, and Lx: Lz � Ly

� Lx. The nanowire can be top gated to control chemical
potential in it. The method for fabricating the proposed quantum
well heterostructure based on InAs has been demonstrated;
see, e.g., Refs. [12,18].(b) Schematic plot of the lowest energy
subbands due to the transverse confinement.

PRL 106, 127001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 MARCH 2011

0031-9007=11=106(12)=127001(4) 127001-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.127001


for the 2D SM in the presence of the spin-orbit Rashba
interaction (@ ¼ 1):

H SM ¼
Z

dxdyc y
�ðx; yÞĤ��0c �0 ðx; yÞ; (1)

Ĥ ¼ �@2x þ @2y
2m� ��� i�ð�x@y � �y@xÞ þ Vx�x; (2)

where m�, �, and � are the effective mass, the strength of
spin-orbit interaction, and the chemical potential, respec-
tively. The latter can be controlled by using the gate
electrodes [11,12]. The last term in Eq. (2) corresponds
to the Zeeman term due to the applied external magnetic
field aligned along the x̂ axis: Vx ¼ gSM�BBx=2. Note that
the magnetic field is essential here—it opens up a gap in
the spectrum at px ¼ 0 and allows one to avoid fermion
doubling, which is detrimental for the existence of
Majorana fermions [7,8].

We now include the size quantization along the ŷ
direction by assuming that Ly � Lx. One can notice that

Hamiltonian (2) is separable in x-y coordinates and the
field operator can be written as

c ðx; yÞ ¼ X
px;ny¼1;2;...

ffiffiffiffiffiffiffiffiffiffiffi
2

LyLx

s
sin

�
�nyy

Ly

�
eipxxapx;ny ; (3)

where apx;ny is the electron annihilation operator in a state

ny having momentum px. The physical parameter regime

we consider here corresponds to the confinement energy
along the y direction being larger than all the relevant
energy scales of the Hamiltonian (2) so that there are
only a few lowest subbands occupied; see Fig. 1(b). This
assumption actually corresponds to the typical experimen-
tal situation in InAs nanowires [13]. For �< 2Esb, where
Esb ¼ 3�2=2m�L2

y is the subband energy difference, one

can project the wave function to the lowest two subbands
ny ¼ 1; 2 in (3) and simplify the Hamiltonian (1). By

introducing the spin-band spinors � ¼ ðcpx"; cpx#; dpx";
dpx#Þ, where the annihilation operators cpx

and dpx
corre-

spond to apx;ny¼1 and apx;ny¼2, respectively, the single-body

Hamiltonian becomes H ¼ P
px
�yðpxÞHred�ðpxÞ with

Hred being defined as

Hred¼ p2
x

2m������ypxþEsb

1��z

2
�Ebm�x�yþVx�x:

Here Pauli matrices �i and �i act on the spin and
band degrees of freedom. The band mixing energy Ebm

corresponds to the expectation value p̂y operator between

different band eigenstates, i.e., Ebm ¼ RLy

0 dy 2�
L sinð2�yL Þ@y

sinð�yL Þ ¼ 8�
3Ly

.

We now study topological properties in this regime with
a low number of subbands occupied. We investigate here
whether Majorana fermions survive and are robust in this

quasi-1D geometry. The multiband proximity-induced SC
can be described as

HSC ¼ X
px

½�11c
y
px"c

y
�px# þ�22d

y
px"d

y
�px# þ�12d

y
px"c

y
�px#

þ �12c
y
px"d

y
�px# þ H:c:�; (4)

where the induced SC pairing potentials �ij depend on

the microscopic details of the SM-SC interface, e.g., rough
or smooth interface. In the former case the magnitude of
�12 can be a sizable fraction of �11. Taking into account
the total Hamiltonian Htot ¼ Hred þHSC we can now de-
fine the Nambu spinor as follows: �ðpÞ ¼ ðcpx"; cpx#; dpx";
dpx#; c

y
�px"; c

y
�px#; d

y
�px"; d

y
�px#ÞT . In this convention for

Nambu spinors the Bogoliubov–de Gennes (BdG)
Hamiltonian for two subband model reads

HBdGðpxÞ ¼
�
p2
x

2m� ��� �ypx þ Esb

2
ð1� �zÞ þ Vx�x

�
�z

� Ebm�x�y þ i�y½�xj�12j þ�þ þ �z���
� ði�y cos’þ i�x sin’Þ; (5)

where Pauli matrices �i, �i ,and �i act on spin, band,
and Nambu degrees of freedom of the spinor �ðpÞ,
respectively; �� ¼ ðj�11j � j�22jÞ=2, and ’ is the SC
phase. The particle-hole symmetry for HBdG (5) reads
�HBdGðpÞ��1 ¼ �HBdGð�pÞ, where � is an antiunitary
operator � ¼ �xK with K denoting the complex
conjugation.
The presence of Majorana modes in the system and

the corresponding phase diagram can be obtained by
using topological arguments due to Kitaev [5]. Following
Ref. [5], we introduce Z2 topological index M (Majorana
number):

M ¼ sgn½PfBð0Þ�sgn½PfBð�=aÞ� ¼ �1; (6)

where �1 corresponds to topologically trivial and non-
trivial states. Here antisymmetric matrix B defines the
Hamiltonian of the system in the Majorana basis [5].
Rather than computing the transformation matrix to the
Majorana basis as was originally done in Ref. [5], we note
following Refs. [7,14] that the antisymmetric matrix BðpxÞ
can be simply constructed by virtue of the particle-hole
symmetry. Indeed, the matrix BðPÞ ¼ HBdGðPÞ�x needs to
be calculated at the particle-hole invariant points where
HBdGðPÞ ¼ HBdGð�PÞ and B is antisymmetric BTðPÞ ¼
�BðPÞ. In 1D there are two such points: P ¼ 0; �a with
�
a being the momentum at the end of the Brillouin zone

and a being the lattice spacing. (In the continuum limit
�=a ! 1.) The function Pf in Eq. (6) denotes Pfaffian
of the antisymmetric matrix B. The computation of
Pfaffian at P ¼ �=a ! 1 is straightforward yielding
sgn½PfBð�=aÞ� ¼ þ1. Thus, the phase boundary for the
transition between topologically trivial and nontrivial
phases is given by the sign change of PfBð0Þ which can
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happen only when the bulk quasiparticle gap becomes
zero, i.e., DetHBdGðPÞ ¼ 0; see Fig. 2. This is a generic
phenomenon since the topological reconstruction of the
fermionic spectrum cannot occur adiabatically and re-
quires the nullification of the bulk excitation gap [15,16].
For a two-band model PfBð0Þ can be calculated analyti-
cally:

PfBð0Þ ¼ ðV2
x �E2

bm þ j�12j2 þ�2� ��2þ �Esb�þ�2Þ2
�V2

x ½E2
sb � 4Esb�þ 4ð�2

12 þ�2� þ�2Þ�
þ ½Esbð�� þ�þÞ� 2�þ��2; (7)

allowing one to compute M as a function of the physical
parameters. The phase diagram showing a sequence of
topological phase transitions for the two subband nanowire
is shown in Fig. 2(a). We now analyze the phase diagram
in various regimes. In the limit �; jVxj � Esb we find
that PfBð0Þ � �V2

x þ�2
11 þ�2 recovering the previous

results obtained for the single band [7,8]. When jVxj �
�� Esb we find that PfBð0Þ � �V2

x þ �2
22 þ ðEsb ��Þ2.

Thus, the system supports Majorana modes as long as

jVxj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

22 þ ðEsb ��Þ2
q

. These results can be intui-

tively understood within the weak-coupling approximation

since in both cases the Fermi level crosses an odd number
of bands in the interval ð0; �aÞ. The most interesting pa-

rameter regime is �� Esb=2, which corresponds to the
‘‘sweet spot’’ in the phase diagram; see Fig. 2(a). At this
point the system is to a large extent insensitive to chemical
potential fluctuations, and, thus, this regime provides a
promising route to realizing a robust topological SC phase.
At � ¼ Esb=2 the width of the topologically nontrivial
region is given by Esb=2��12 < jVxj< Esb=2þ �12 to
a leading order in 1=Esb. This is a nonperturbative result,
and the SC state emerging here is determined by the strong
interband mixing due to �12. The presence of a sizable
�12 is crucial for the topological stability of the nontrivial
SC phase, and the magnitude of the quasiparticle excitation
gap at the sweet spot strongly depends on the value of �12;
see Figs. 2(b) and 2(c).
In order to establish the robustness of the topological

phase near the sweet spot, we have done numerical simu-
lations for a finite multiband nanowire with Lx � 10 �m
and Ly � 0:1 �m. The results obtained by numerical diag-

onalization of the real-space Hamiltonian Htot ¼ HSM þ
HSC are shown in Figs. 3(a) and 3(b). One can notice that at
the sweet spot ( ~Vx � 15 and ~� � 15) there is a pair of
Majorana zero-energy states whereas for a smaller mag-
netic field ( ~Vx � 8) corresponding to the trivial phase the
zero-energy modes disappear, corroborating the phase dia-
gram shown in Fig. 2(a). Furthermore, at the sweet spot the
zero-energy states are well-separated from the continuum.
Indeed, as shown in Fig. 3(a), the minigapEmn constitutes a
sizable fraction of the induced SC gap: Emn � 1 K. Thus,
Majorana modes in quasi-1D nanowires are very robust
against thermal fluctuations which makes these systems
very advantageous for the topological quantum computa-
tion. We also studied the robustness of the topological
phase against disorder by adding the impurity potential

UimpðrÞ ¼
P

jU0j
expð�jr�rjj=�Þ
1þjr�rjj=d to the Hamiltonian Htot.

Here r is a vector in the x-y plane, rj are random positions

of the impurities, � is the screening length, U0j ¼ �U0 is

the impurity potential with a random sign but a constant
magnitude U0, and d is the cutoff regularizing 1=r poten-
tial at short distances. We considered here two types of
disorder mimicking short-range impurities (� ¼ 16 nm)
and long-range chemical potential fluctuations (� ¼
260 nm); see Figs. 3(c) and 3(d). In the former case, the
topological phase is very robust against disorder even if
jU0j 	 Esb; see Fig. 3(c). This can be qualitatively under-
stood as follows: At a given position, the disorder potential
leads to a formation of two Majorana modes localized at
the impurity. Because these Majorana states are close to
each other, they hybridize and form conventional subgap
states and do not affect Majorana modes at the ends even if
the impurity is fairly close to the edge; see Fig. 3(c). On the
other hand, the long-range disorder is more dangerous.
In Fig. 3(d), we show the energy spectrum for two cases:
U0 smaller ( ~U0 ¼ 25) and larger ( ~U0 ¼ 100) than W=2;

FIG. 2 (color online). (a) Phase diagram for the two-band
nanowire model as a function of the chemical potential ~� and
external magnetic field ~Vx. The width of the topological region is
largest at the sweet spot: ~W � 60. Here the tilde denotes rescaled
energy ~E ¼ E=m��2 and ~�12 ¼ 4. The light and dark regions
correspond to topologically trivial and nontrivial phases. (b),
(c) Quasiparticle excitation gap obtained by using Eq. (5) as a
function of ~Vx and ~�. The solid (red) and dashed (blue) lines
correspond to ~�12 ¼ 4 and ~�12 ¼ 1, respectively. The closing of
the gap for ~�12 ¼ 4 (solid red line) is consistent with the phase
diagram shown in (a). The quasiparticle excitation gap at the
sweet spot strongly depends on the magnitude of �12. We
assume here m� ¼ 0:04me with me being electron mass and � ¼
0:1 eV �A yielding m��2 � 0:6 K. We used realistic parameters
Ly ¼ 130 nm and ~Esb ¼ 30, ~Ebm ¼ 5, and ~�11 ¼ ~�22 ¼ 4.
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see Fig. 2(a). For U0 <W=2, the topological phase is
stable; i.e., the disorder can suppress excitation gap but
does not affect Majorana modes. On the other hand, if
U0 >W=2, the disorder effectively creates an inhomoge-
neous wire with many topological and nontopological
regions [see Fig. 3(d)]. Thus, our simulations explicitly
demonstrate the importance of working at the sweet spot
where the width of the topological region W is maximized
and the topological phase is most robust against long-range
disorder.

In conclusion, we have derived the topological phase
diagram for the existence of Majorana particles in a
realistic quasi-1D semiconductor wire in the presence of
multisubband occupancy. Unexpectedly, we find robust
and experimentally feasible sweet spots in the chemical
potential-Zeeman splitting phase diagram where Majorana
modes should stabilize at the ends of the wire. The

great advantages of our proposed structure in detecting
Majorana particles are (i) its materials flexibility (i.e., no
need to impose one dimensionality or single channel
constraint) and (ii) its immunity to density (or chemical
potential) fluctuations and disorder. The calculation of the
energy spectrum for realistic experimental settings sug-
gests the possibility to test our theoretical results by using
local tunneling experiments; see Ref. [17]. Tunneling
of electrons to the ends of the nanowire would reveal a
pronounced zero-bias peak when the system is in the
topologically nontrivial phase. This zero-bias peak will
disappear in the trivial phase.
This work is supported by DARPA-QuEST and

JQI-NSF-PFC.
Note added.—While finishing this manuscript we be-

came aware of Refs. [3,19], where multichannel general-
ization of the spinless p-wave SC state was studied.
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FIG. 3 (color online). (a),(b) Energy spectrum ~Em for a finite-
size nanowire obtained by numerical diagonalization of Htot ¼
HSM þHSC for ~� ¼ 15, ~Vx ¼ 15, and ~Vx � 8, respectively.
Here ~E ¼ E=m��2, and m labels eigenvalues of Htot. Inset:
Lowest-lying energy states. Majorana zero-energy modes are
present in (a) and disappear in (b). (c),(d) Energy spectra for a
given disorder realization with impurity potentials shown at the
bottom of (c) and (d) corresponding to � ¼ 16 nm and � ¼
260 nm, respectively. The dark (light) colors denote positive
(negative) U0j. (c) The spectrum at the sweet spot for the short-

range disorder shown at the bottom ( ~U0 ¼ 100). Inset: Lowest-
lying eigenstates. The topological phase is robust against short-
range disorder; i.e., the disorder affects extended states but
leaves Majorana modes intact. (d) The spectrum at the sweet
spot with long-range disorder for ~U0 ¼ 100 (squares) and ~U0 ¼
25 (diamonds). The impurity potential Uimp is shown at the

bottom of the panel. Inset: Lowest-lying eigenstates for ~U0 ¼
100. The topological phase is stable as long as U0 <W=2. For
~U0 ¼ 100 additional Majorana modes are localized at the im-
purities, and the topological phase collapses by splitting into
fragments of topological and nontopological regions; see the
inset. Both types of disorder lead to the emergence of the
additional subgap states localized at the ends. Here we used
parameters specified in Fig. 2.
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