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Topological insulators are new states of quantum matter in which surface states residing in the bulk

insulating gap are protected by time-reversal symmetry. When a proper kind of antiferromagnetic long-

range order is established in a topological insulator, the system supports axionic excitations. In this Letter,

we study theoretically the electronic states in a transition metal oxide of corundum structure, in which

both spin-orbit interaction and electron-electron interaction play crucial roles. A tight-binding model

analysis predicts that materials with this structure can be strong topological insulators. Because of the

electron correlation, an antiferromagnetic order may develop, giving rise to a topological magnetic

insulator phase with axionic excitations.
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The discovery of a time-reversal invariant (TRI) topo-
logical insulator (TI) has attracted a great deal of attention
in condensed matter physics [1–9]. With time-reversal
symmetry T broken on the surface, the electromagnetic
response of three-dimensional (3D) insulators is described
by the topological � term of the form S� ¼ ð�=2�Þ�
ð�=2�ÞRd3xdtE � B together with the ordinary Maxwell

terms, whereE andB are the conventional electromagnetic
fields inside the insulator, � ¼ e2=@c is the fine structure
constant, and � is the dimensionless pseudoscalar parame-
ter describing the insulator, which refers to the ‘‘axion’’
field in axion electrodynamics [10]. For a system without
boundaries, all the physical quantities are invariant if � is
shifted by an integer multiple of 2�. Therefore, all TRI
insulators fall into two distinct classes described by either
� ¼ 0 (trivial insulator) or � ¼ � (TI) [11]. Such a uni-
versal value of � ¼ � in TIs leads to a magnetoelectric
effect with an universal coefficient, which has several
unique experimental consequences such as a topological
contribution to the Faraday and Kerr effect [11–13], and
the image monopole induced by an electron [14]. � has an
explicit microscopic expression of the momentum space
Chern-Simons form which depends on the band structure
of the insulator [11]:

� ¼ 1

4�

Z
d3k�ijkTr

�
Ai@jAk þ i

2

3
AiAjAk

�
; (1)

where A
��
i ðkÞ ¼ �ihu�j@=@kiju�i is the momentum space

non-Abelian gauge field, with ju�i and ju�i referring to the
Bloch wave function of occupied bands.

If a strong electron correlation exists in a TI, a long-
range antiferromagnetic order can be established under a
low enough temperature. Since the antiferromagnetic
order breaks T spontaneously, � can deviate from � and
also becomes a dynamical field which has fluctuations
associated with some spin collective modes. Such a

nonconventional antiferromagnetic insulator supporting
axion excitations is proposed as a topological magnetic
insulator (TMI) [15]. Because of its coupling to photons,
the axion field hybridizes with photons, leading to an axion
polariton, with a polariton gap tunable by an external
magnetic field. Thus such a material can be used as a novel
type of optical modulator to control the transmission of
light through the material.
To realize the TMI phase, we need both the nontrivial

topology of the electron bands and a strong electron corre-
lation. The materials with electrons in the 3d, 4d, or 5d
orbital can have both strong spin-orbit coupling (SOC)
and strong interaction, which is ideal for this purpose.
Recently, models for TIs with a strong electron correlation
have been proposed [16–19]; also, topological phases may
exist in thallium-based III-V-VI2 ternary chalcogenides
[20] as well as ternary Heusler compounds [21,22]. In
this Letter, we study theoretically the transition metal
oxide ABO3 of corundum structure with A and B standing
for some transition metals such as Fe, Ru, Rh, Ir, Os, etc.
[23]. A possible candidate material is �-Fe2O3. A tight-
binding model is obtained by using the point group sym-
metry of this structure, from which we find a TMI phase
with a certain SOC strength and electron-electron
interaction.
The corundum structure is shown in Fig. 1(a). Each

transition metal atom is surrounded by an oxygen octahe-
dron, and the d orbitals are split by the octahedral crystal-
line field into doublet egðx2 � y2; 3z2 � r2Þ and triplet

t2gðxy; yz; zxÞ orbitals [see Fig. 1(c)]. We will neglect a

small distortion of the oxygen octahedra which may lead to
minor corrections to the electronic structure [24]. The
energy of t2g stays lower with respect to eg, because

the latter point towards the negatively charged oxygens.
The SOC is effective in t2g orbitals and negligible in eg
orbitals. Including the SOC, t2g splits into total angular
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momentum jeff ¼ 3=2 and jeff ¼ 1=2. We focus on those
materials where the Fermi level lies completely in the
jeff ¼ 1=2 subbands. For example, the ions Fe3þ, Ir4þ,
etc. with five d electrons satisfy this requirement [23].

To obtain the electron dynamics in this system, we start
with a symmetry analysis to the corundum structure. The
space group of this structure is D5

3dðR�3cÞ. It has a trigonal
axis (threefold rotation symmetryC3) defined by the z axis,
a binary axis (twofold rotation symmetry C2), defined by
the y axis, and inversion symmetry with the inversion
center at the middle of the two neighbor transition metal
atoms. The primitive lattice vectors ~t1;2;3 and primitive unit

cells are shown in Fig. 1(a), where each unit cell consists of
four transition metal atoms denoted as 1, 2, 3, and 4. Since
the oxygen p-level �p are far away from the Fermi level,

we can consider a model describing only d electrons, with
the hopping mediated by the oxygen p orbitals. The model
is generally written as

H 0 ¼ �X
hiji

½dyi tijdj þ H:c:� þ X
hhijii

½dyi t̂0ijdj þ H:c:�; (2)

where hiji and hhijii denote the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) sites, respectively, and the
hopping terms tij and t̂0ij are in general 2� 2 matrices.

The form of the parameters tij and t̂0ij can be simplified by

symmetry considerations. Because of space limitation, we
will present only the result of the symmetry analysis. The
NN transfer integrals tij are real and spin-independent,

with two independent parameters, the intraplane hopping
t and the interplane hopping t?. t ¼ ðpd�Þ2½ðpp�Þþ
3ðpp�Þ�=3ð�d � �pÞ2 [17], where (pd�), (pp�),

and (pp�) are Slater-Koster parameters between pd and
pp, respectively [25]. The contribution of the order of
ðpd�Þ2=ð�d � �pÞ cancels out in the honeycomb lattice,

in sharp contrast to Sr2IrO4 with the perovskite lattice
[26,27]. The NNN transfer integrals are spin-dependent,
and they are essential for the realization of the TI phase.
For the intraplane in layer A, 1 ! 1 hopping can be
written as

t̂011 ¼ it0
1k ~� � ~r11 þ t1k; (3)

where ~r11 is a unit vector ~r11 / ~t11 þ 1=
ffiffiffi
2

p
ẑ, ~t11 is the

hopping link, and t̂022 ¼ t̂0y11 due to inversion symmetry,

while in the B plane, t̂033 ¼ e�i�=2�z t̂011ei�=2�z and

t̂044 ¼ e�i�=2�z t̂022e
i�=2�z due to C2 symmetry. For the

interplane (A ! B),

t̂013 ¼ it02? ~� � ~r13 þ t2?; (4)

where ~r13 is a unit vector ~r13 / ~t13 � �ẑ, ~t13 is the
hopping link, and � is some parameter which depends on
materials and cannot be determined purely by symmetry;

below, we choose � ¼ 1=
ffiffiffi
2

p
, which has almost the same

amplitude as the intraplane. t̂024 ¼ t̂013 and t̂014 ¼ t̂023 ¼
e�i�=6�z t̂013ei�=6�z . Explicitly, ~rij for the intraplane 1 ! 1,

2 ! 2 hopping are x1, y1, and z1 and for 3 ! 3, 4 ! 4 are
x2, y2, and z2 denoted in Fig. 1(a).
In summary, the transfer integrals are real and spin-

independent for NN links but complex and spin-dependent
for NNN links. The accurate hopping parameters vary in
different materials. As an example, in the following wewill
use the transfer integrals of Ir oxide introduced in Ref. [17].
One can always define all the parameters in the unit of
in-plane NN hopping t, which leads to t ¼ 1, t0

1k ¼ 0:33,

t1k ¼ �0:1, t? ¼ y, t2? ¼ 0:5y, and t02? ¼ �t2? ¼ 0:4y.
Here � is the SOC strength which determines the ratio of
spin-dependent hopping and spin-independent hopping.
For Ir oxide we have � ¼ 0:8. All the interplane hopping
matrix elements are rescaled by a factor y which incorpo-
rates the anisotropy between intraplane and interplane
directions. The energy dispersions for y ¼ 0:3 (dashed
line) and y ¼ 0:55 (solid line) are shown in Fig. 2(a),
which shows that the system at half filling is an insulator
in both cases. Because of inversion symmetry, all the
energy bands are doubly degenerate.
In 3D TIs, four independent Z2 topological invariants

can be defined [28–30]. For inversion symmetric systems,
all the topological invariants can be simply determined by
the parity of the wave functions at the 8 TRI momenta
(TRIM) in the Brillouin zone [3]. G1, G2, and G3 are the
three basis vectors of the reciprocal lattice; then the 8
TRIM are defined by ki ¼ ðk1G1 þ k2G2 þ k3G3Þ=2�
with k1; k2; k3 ¼ 0 or �. For each TRIM ki, one can define
a Z2 quantity 	i as the multiplication of the parity of all
occupied bands 	i ¼ Q

s2occ
s, with 
s the parity of the
sth band. It should be noticed that a Kramers pair of bands
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FIG. 1 (color online). (a) Corundum crystal structure with
three primitive lattice vectors denoted as ~t1;2;3. Each transi-

tion metal ion M (M ¼ Ir, Os, etc.) (green large circles) is
surrounded by oxygen octahedron (red small circles).
(b) Brillouin zone for corundum structure. The four inequivalent
TRI points are �ð000Þ, Fð�00Þ, Lð���Þ, and Zð00�Þ.
(c) Schematic crystal field splitting of the 5d level in a corundum
structure. We are interested in the half filling case with effective
angular momentum jeff ¼ 1=2.
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are counted only once; otherwise, 	i would always be
even. The four Z2 invariants (�0;�1�2�3) can be deter-
mined by 	i in which �0 ¼

Q
8
i¼1 	i is the strong topologi-

cal invariant. For y ¼ 0:3, we find 	 ¼ þ1 at all TRIM at
half filling. On the contrary, for y ¼ 0:55 we find 	 ¼ �1
at the three F points [see Fig. 1(b)] and 	 ¼ þ1 at all other
TRIM. Consequently, the y ¼ 0:55 phase is a strong TI
with the topological character (1; 000), and y ¼ 0:3 is a
trivial insulator with character (0; 000). From this result we
see that a band inversion [1] occurs at F points upon the
change of y. In Fig. 2(b), we show the energy at F point
versus y, from which one can see clearly a level crossing at
y ’ 0:42. The topological invariants can be calculated for
all values of anisotropy parameter y and SOC parameter �,
which leads to the phase diagram shown in Fig. 3. One can
see that the topological nontrivial band structure can be
realized at large y (i.e., small anisotropy) even for infini-
tesimal SOC. However, one should notice that for some
parameters the band structure is actually a semimetal (simi-
lar to Sb), which has a direct gap but does not have an
indirect gap. We also solve the Hamiltonian (2) in a slab
geometry with two 001 surfaces to study explicitly the
topological surface states. Figures 2(c) and 2(d) show the
2D energy dispersion of the two systems shown in Fig. 2(a).
In addition to the bulk states, for y ¼ 0:55 there are surface
states with three Dirac cones at M points of the surface
Brillouin zone, while no surface state is found for y ¼ 0:3,
in consistency with the bulk topological invariants.

To get a better understanding of the physical properties
of this system, a low energy effective model can be

obtained by expanding the Hamiltonian around the
F points. Around each F point, the effective model is
4� 4 which describes two Kramers pairs of low lying
bands and has Dirac-like form. In the following, we will
denote the momentum by its coordinate in the basis of
reciprocal lattice, i.e., k ¼ ðk1G1 þ k2G2 þ k3G3Þ=2�.
The F points are given by ð�; 0; 0Þ, ð0; �; 0Þ, and
ð�;�; 0Þ. Around the point ð�; 0; 0Þ the Hamiltonian has
the following form:

H effð�00Þ ¼ �0ðqÞI4�4 þ
X5

a¼1

daðqÞ�a: (5)

Here the Dirac � matrices are defined as �a ¼
ð�x � �x; �x � �y; �y � 1; �z � 1; �x � �zÞ, where �i and

�i (i ¼ x; y; z) denote the Pauli matrices in the space
of orbital and spin, respectively. q ¼ k� ð�00Þ, daðqÞ ¼P

i¼1;2;3A
a
i qi for a ¼ 1; 2; 3; 5, d4ðqÞ ¼ MþP

i¼1;2;3Biq
2
i ,

and �0ðqÞ ¼ CþP
i¼1;2;3Diq

2
i . For � ¼ 0:8, around the

topological phase transition point we have

Aa
i ¼

0:14 �0:12 0:37 �0:34
�0:47 0:06 �0:13 0:09
0:014 0:038 0:015 0:055

0
@

1
A;

Bi ¼ ð0:625; 0:32; 0:24Þ; Di ¼ ð0:375; 0:04; 0:04Þ
and C ¼ 0:064. The mass parameter M depends on y as
M � �23yþ 9:76, which changes sign at y ’ 0:42 and
leads to the topological phase transition. The effective
Hamiltonian around the other two F points at ð0�0Þ and
ð��0Þ can be obtained by C3 rotation.
Now we study the effect of electron correlation.

The leading term in the interaction Hamiltonian is the
on-site Hubbard repulsion for the jeff ¼ 1=2 orbitals
Hint ¼ U

P
ini"ni#. Magnetic ordering can be studied in

the mean-field approximation. For simplicity, we consider

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2

-1

0

1

2

3

4

-4

-2

0

2

-6

-4

-2

0

2

4

-6

-4

-2

0

2

4

ΓΜ3Μ1Γ

y=0.4245

ΓZF LΓ y

Μ2 Μ2 ΓΜ3Μ1Γ

(b)

(1;000)(0;000)

(c)

M1M3

M2

M1M3

M2

(d)

E
/t

E
/t

1

2

(a)

FIG. 2 (color online). (a) 3D energy band dispersion of tight-
binding model for a corundum structure with � ¼ 0:8 and
y ¼ 0:3 (dashed line) and y ¼ 0:55 (solid line). (b) The change
of energy levels at F point (�00) versus y. A band crossing
occurs at y ¼ 0:4245. The system changes from a trivial insu-
lator to a TI. (c),(d) 2D band structure for a slab with 001 surface
for the parameters � ¼ 0:8 and y ¼ 0:3 in (c) and y ¼ 0:55 in
(d). The red curves in (d) stand for surface states. The inset
shows the surface Brillouin zone.
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FIG. 3 (color online). The phase diagram of the system with
two variables: the anisotropy parameter y and SOC parameter �.
The green and gray regions stand for topological nontrivial and
trivial phases, respectively. Points A and B correspond to the
parameters used in Figs. 2(c) and 2(d), respectively.
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only the order parameters that do not break translational
symmetry. The mean-field calculation predicts a spin-
density wave (SDW) phase above a critical U, and the
spin moments of this SDW phase lie in the honeycomb
plane, which are ordered antiferromagnetically within each
layer and noncollinear between the two neighboring layers,
as shown in Fig. 4. A finite mass for exciting the SDW
phase is, for example, mSDW=t ¼ 3:65 when U=t ¼ 6:0.
Experimentally, �-Fe2O3 develops a canted antiferromag-
netic phase with spins residing in the honeycomb layer
when TM < T < TN�eel, where TM is the Morin transition
temperature [31–33]. Spins in each layer are parallel, and
those in two adjacent layers are coupled antiferromagneti-
cally. Moreover, due to a slight spin canting, the spins in
adjacent layers are not exactly antiparallel (noncollinear).
Spins can be ordered along one of three directions inter-
changed by C3 and are homogeneously distributed in the
crystal [31,32]. The deviation from the SDW pattern may
due to the hopping parameters chosen in the calculation
[33]. Although it is different from the pattern we obtained
in Fig. 4, the spin ordering in bulk �-Fe2O3 breaks T ,
giving rise to � � 0; �. Therefore, �-Fe2O3 is a possible
material to realize TMI.

The value of � in the SDW phase of this effective model
can be calculated as in Ref. [15]:

� ¼ 1

4�

Z
d3k

2jdj þ d4
ðjdj þ d4Þ2jdj3

�ijkldi@xdj@ydk@zdl; (6)

where i; j; k; l ¼ 1; 2; 3; 5 and jdj ¼ ðP5
a¼1 d

2
aÞ1=2. Since

the main contribution to � comes from the region close

to Dirac points, � can be approximated by the sum of �’s
calculated separately for each Dirac point by using the
effective model. The numerical results of � is shown in
Fig. 4(b).
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