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A closed quantum system is defined as completely controllable if an arbitrary unitary transformation

can be executed using the available controls. In practice, control fields are a source of unavoidable

noise. Can one design control fields such that the effect of noise is negligible on the timescale of the

transformation? Complete controllability in practice requires that the effect of noise can be suppressed for

an arbitrary transformation. The present study considers a paradigm of control, where the Lie-algebraic

structure of the control Hamiltonian is fixed, while the size of the system increases, determined by the

dimension of the Hilbert space representation of the algebra. We show that for large quantum systems,

generic noise in the controls dominates for a typical class of target transformation; i.e., complete

controllability is destroyed by the noise.
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Coherent control was constructed to steer a quantum
system from an initial state to a target state via an external
field [1,2]. The idea was to control the interference pathway
governing the dynamics. For pure initial and final (target)
states, the method can be termed state-to-state coherent
control. A generalization is steering simultaneously a set
of initial pure states to a set of final states, i.e., controlling a
unitary transformation. Such an application sets the foun-
dation for a quantum gate operation [3–5]. Three basic
questions address feasibility of coherent control. The first
question is, for a preset initial and target state, does a
control field exist? This is the problem of controllability.
The second is how to construct a field that leads to the
target. This is the problem of synthesis. The third is how
to optimize the field that carries out this task. This is the
problem of optimal control theory [6–8]. Experimentally
there has been a remarkable success in constructing devices
designed to generate arbitrary control fields [9–11].
Nevertheless, in practice, controllability is hard to achieve
even for small quantum systems [12–14]. Applications
toward quantum information processing require upscaling
of the control procedures to large quantum systems. The
issue of controllability of a closed quantum system has
been addressed by Tarn and Clark [15]. Their theorem
states that for a finite dimensional closed quantum system,
if the control operators and the unperturbed Hamiltonian
generate the Lie algebra of all Hermitian operators, the
system is completely controllable; i.e., an arbitrary unitary
transformation of the system can be realized by an appro-
priate application of the controls [16]. Complete controll-
ability implies state-to-state controllability.

In practice, the controlled systems are open and the
system-bath coupling introduces noise into the system
dynamics. A number of techniques have been designed to
combat the environmental noise and effective and ingen-
ious algorithms have been invented and explored [17–21].

The present study focuses on the effect of the noise orig-
inating in the control field. The magnitude of this noise
depends on the properties of the control field. This depen-
dence raises a fundamental question: is it always possible,
for a given target, to design a field such that the effect of the
associated noise can be neglected? This problem has been
extensively investigated in the context of fault-tolerant
quantum computation [22], where various schemes have
been designed to fight the noise in the gates. In quantum
computation, the number of gates increases with the size
of the system. In many fields, for example, in NMR [23] or
in control of molecular systems [1], a different control
paradigm is standard. There the control operators are fixed
while the size of the system may vary. This is the control
paradigm considered in the present study. The presentation
is restricted to a quantum system with a finite Hilbert space
dimension. It is assumed that the control operators are
elements of the spectrum-generating algebra of the quan-
tum system [24]. For a finite dimensional system it is
sufficient to consider a compact semisimple algebra [25].
The size of the system is determined by the dimension of
the Hilbert space representation of the algebra. It can be
characterized by a parameterN, which is a scaling factor of
the highest weight of the representation [26]. The physical
interpretation of N depends on the system. It can be, for
example, a number of particles in the system or the number
of energy levels. For this paradigm, it is shown that
complete controllability of a large quantum system, i.e.,
for N � 1, even in the weaker sense of state-to-state
control, does not survive in the presence of generic noise
in the control fields. As a result, the control is not scalable
with the size of the system.
Let the Hamiltonian of the controlled system be

Ĥ ¼ Ĥ0 þ
X
k

½ukðtÞ þ �kðtÞ�X̂k (1)
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where ukðtÞ are control fields and the noise �kðtÞ is
delta-correlated Gaussian noise with h�kðtÞ�lðt0Þi ¼
2�jukðtÞj�kl�ðt� t0Þ. The dimensionless number � � 0
measures the relative strength of noise in the control fields.

The operators X̂k are elements of the spectrum-generating

algebra associated with Ĥ0 and are termed controls in what
follows. The equation of motion for the density operator of
the system is given by [27]

@

@t
�̂ ¼ �i

�
Ĥ0 þ

X
k

ukðtÞX̂k; �̂

�
� �

X
k

jukðtÞj½X̂k; ½X̂k; �̂��:

(2)

In the absence of noise the system (2) is completely

controllable for a generic Ĥ0. Because of the noise, the
purity P � Trf�̂2g of an initially pure state �̂ ¼ jc ihc j
will decrease. The effect of noise can be neglected only if
the purity loss during the target transformation is small,
i.e., �P � 1. Otherwise, the state-to-state and, hence,
complete controllability is lost. The instantaneous rate of
purity loss for a pure state �̂ ¼ jc ihc j evolving according
to Eq. (2) is given [28] by

�½c � � � d

dt
Trf�̂2gj�̂¼jc ihc j ¼ 4�

X
k;uk�0

jukðtÞj�X̂k
½c �;

(3)

where �X̂k
½c � is the variance of the control operator X̂k

in the state c :

�X̂k
½c � � hc jX̂2

kjc i � hc jX̂kjc i2: (4)

It should be noted that the rate of purity loss increases

with the variance of X̂k. A generic state of the system is
characterized by �X̂k

½c � � N2.

The logic of the presentation is as follows. First, a class
of state-to-state target transformations is defined. The
transformations can be accomplished in the absence of
noise due to complete controllability. The time duration
of these transformations can be bounded from below. Next,
the lower bound of the purity loss rate for the evolving state
in the presence of noise is estimated. For small purity loss,
the two bounds can be combined to obtain the lower bound
on the purity loss during the transformation. This bound
depends on the relative strength of noise �. The crux of the
class of transformations considered is that for any realiza-
tion of the control fields accomplishing the transformation,
the evolving system resides for a long period of time in
states with large variance �N2 with respect to the control
operators. The large variance will generate ��N2 rate of
purity loss in the presence of noise in the control fields.
For this class of transformations it is found that the lower
bound on the time of transformation scales as �N�1;
therefore, � must be OðN�1Þ in order for the purity loss
to be negligible. Since in practice the relative magnitude
of the noise cannot be made arbitrarily small, it follows

that the loss of purity cannot be neglected for large sys-
tems. As a result, a transformation from an arbitrary pure
state to another pure state cannot be accomplished. Large
systems are not state-to-state controllable and are therefore
not completely controllable.

Let jni denote the eigenstates of Ĥ0. We consider the
transformation from the initial state jc ii ¼

P
nri;ne

i�i;n jni
to the final state jc fi ¼ P

nrf;ne
i�f;n jni, such that

1 � k�rk � " > 0; (5)

where k�rk is the Euclidean norm of �r � rf � ri, ri ¼
ðri;1; ri;2; . . .Þ, and rf ¼ ðrf;1; rf;2; . . .Þ. The choice of norm
excludes changes to states that can be reached by free

propagation generated by Ĥ0. As a consequence, the free
evolution does not contribute to the bound on the time
of the transformation c i ! c f. Under the assumption that

the noise is small, the bound can be estimated in the zero
order in the noise strength. For estimation of the bound,

an auxiliary operator Â is defined such that (i) it commutes

with Ĥ0, and (ii) its expectation value changes during the

transformation. Since Â commutes with Ĥ0, the change of
its expectation value during the transformation is due to the

operation of the control fields. We define Â ¼ P
nsnjnihnj,

where sn ¼ sgnf�rng. The change of the expectation value
of the operator Â during the transformation c i ! c f is

given by

hÂif � hÂii ¼
X
n

j�rnjðri;n þ rf;nÞ �
X
n

�r2n ¼ k�rk2;

(6)

where we have used the fact that the vector of amplitudes
r is nonnegative, and, therefore, j�rnj> ri;n only if

�rn � 0. Using inequality (5) we obtain

hÂif � hÂii � "2; (7)

which gives the minimal change of the expectation value

of the operator Â during the transformation c i ! c f.

On the other hand, the change of the expectation value of

Â can be estimated from the Heisenberg equations:

d

dt
Â ¼ i

X
k

ukðtÞ½X̂k; Â� (8)

where we have used the fact that ½Ĥ0; Â� ¼ 0. Let the time
of the transformation be T. Then,

hÂif�hÂii¼
Z T

0

d

dt
hÂidt�X

k

Z T

0
jukðtÞjdtmax

0�t�T
jh½X̂k;Â�ij

�2
X
k

Z T

0
jukðtÞjdtj�kj; (9)

where�k � N stands for the eigenvalue of X̂k, maximal by
the absolute value. In the derivation we have used the fact

that the eigenvalues of Â are 	1. Defining the average
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control amplitude �uk � 1
T

R
T
0 jukðtÞjdt, and using Eqs. (7)

and (9), we arrive at the inequality

T � "2
�
2
X
k

�ukj�kj
��1 � "2

�
2N

X
k

�uk

��1
; (10)

which bounds the time of the transformation for given �uk.
This bound is similar to bounds obtained for the trans-
formation to an orthogonal state in Ref. [29].

We assume that the time T of the transformation c i !
c f is the first passage time when the evolving state

jc ðtÞi ¼ P
nrnðtÞei�nðtÞjni ‘‘crosses the border’’ krðTÞ �

rik ¼ ", i.e., such that for t < T we have krðtÞ � rik< ".
Under the assumption that the purity loss �P during the
transformation is small, the evolving state can be ap-

proximated by �ðtÞ ¼ �ð0Þ þ �ð1Þ 
 �ð0Þ ¼ jc ðtÞihc ðtÞj.
Taking the leading contribution of �ð1Þ into account, we
estimate the lower bound on the purity loss from Eq. (3):

�P � 4T�
X
k

�uk min
0�t�T

f�X̂k
½c ðtÞ�

þ 1

2
hc ðtÞj½X̂k; ½X̂k; �

ð1ÞðtÞ��jc ðtÞig: (11)

We further assume that during the transformation
�X̂k

½c ðtÞ� � ð�kÞ2 � N2. In this case we can neglect

the �ð1Þ-dependent term in the inequality (11). Using the
inequality (10), we obtain

�P �
2"2�

P
k

�uk min
0�t�T

f�X̂k
½c ðtÞ�g

P
k

�ukj�kj : (12)

To estimate min0�t�Tf�X̂k
½c ðtÞ�g we find the lower

bound on the variance of X̂k in the states jc i ¼P
nrne

i�n jni such that kr� rik � ". The variance
�X̂k

½c � is a function of the amplitudes r ¼ ðr1; r2; . . .Þ
and the phases �1; �2; . . . . The free evolution can change
the phases at no cost in purity. Therefore, the minimal
variance attainable for given amplitudes is sought

~� X̂k
ðrÞ � min

�1;�2;:::
f�X̂k

½c �g: (13)

We assume that ~�X̂k
ðrÞ is a smooth function of r for

kr� rik � k�rk, i.e., for sufficiently small �r and

j�rj � k�rk we can expand ~�X̂k
ðri þ �rÞ 
 ~�X̂k

ðriÞ þ
r~�X̂k

ðriÞ � �r. We note that

j�~�X̂k
ðrÞj � jr~�X̂k

ðrÞ � �rj � kr~�X̂k
ðrÞkk�rk: (14)

Let the minimum in Eq. (13) obtain at ��
1ðrÞ, ��

2ðrÞ; . . . .
Let us denote the associated state as c �. Then ~�X̂k

ðrÞ ¼
�X̂k

½c �� and

r~�X̂k
ðrÞ ¼ r�X̂k

½c ��: (15)

It should be noted that�X̂k
½c �� depends on rn both through

the amplitudes of c � and through the phases ��
nðrÞ, which

are also functions of r. Nonetheless, since ��
nðrÞ are de-

fined as giving the minimum of �X̂k
½c �, derivatives of

�X̂k
½c �� with respect to ��

nðrÞ vanish and ��
nðrÞ may be

considered as r independent for the operatorr in the right-
hand side (RHS) of Eq. (15).
Using the definition of Eq. (4), we obtain

r~�X̂k
ðrÞ ¼ rhc �jX̂2

kjc �i � 2hc �jX̂kjc �irhc �jX̂kjc �i:
(16)

Using the explicit form of c � and the fact that r acts only
on the state’s amplitudes we can show that the Euclidean

norm of the RHS of Eq. (16) is bounded by 3
ffiffiffi
2

p ð�kÞ2.
Then, Eqs. (14) and (16) imply j�~�X̂k

ðrÞj � 3
ffiffiffi
2

p ð�kÞ2
k�rk. It follows that for jc i ¼ P

nrne
i�n jni with kr�

rik � " � 1

�X̂k
½c � � ~�X̂k

ðriÞ � 3
ffiffiffi
2

p ð�kÞ2": (17)

From inequalities (12) and (17) we obtain

�P � 2"2�

8<
:
min
l
½~�X̂l

ðriÞ � 3
ffiffiffi
2

p ð�lÞ2"�
max

l
½j�lj�

9=
;: (18)

The variance �X̂k
½c � scales as N2 in a generic state of the

system. The scaling of ~�X̂k
ðriÞ is a more subtle question,

since it is the outcome of the minimization with respect
to the phases in the eigenstates basis. For our purposes,

it is sufficient to show that ~�X̂k
ðriÞ � N2 for some jc ii. Let

us consider a generic eigenstate j�i of Ĥ0. The variance
�X̂k

½�� scales as N2 for all k. Moreover, the variance

is independent of phases. Therefore, taking jc ii ¼ j�i
we shall have ~�X̂k

ðriÞ � N2, and, for sufficiently small ",

inequality (18) will imply

�P � 2"2�N: (19)

It is important to note that inequality (19) holds for small ",
which can still be of the order of unity with respect to N.
As a consequence, for such target transformations the RHS
of inequality (19) will scale as �N. In order for the purity
loss to be negligible, the relative noise strength � must
scale as OðN�1Þ, which is unrealistic for large N.
As an example, let us consider a system of cold atoms

in a double-well trap [30]. The Hamiltonian of the system
can be put in the form

Ĥ 0 ¼ �!Ĵx þ �Ĵz þU

N
Ĵ2z ; (20)

where Ĵk are elements of the suð2Þ Lie algebra. The

operator Ĵz corresponds to the population difference be-

tween the wells and Ĵy to the population flow between

the wells. The on-site interaction strength is given by U,
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! is the hopping rate of the atoms, and � determines the tilt
of the potential wells. N is the number of atoms, corre-
sponding to the (N þ 1)-dimensional irreducible represen-
tation of the suð2Þ algebra, with the spin number j ¼ N=2.

Control can be attained via the control operators Ĵx and Ĵz,
i.e., by modulating the hopping rate and the tilt of the
wells [31]. For a typical system of N * 105 atoms, the
necessary condition�N � 1 cannot be satisfied in practice.
Therefore, the purity loss in the system during a target
transformation of the type considered in the present work
will be of the order of unity and the effect of noise cannot
be neglected.

We conclude that the state-to-state controllability of
large quantum systems is destroyed by the noise on the
control. The strategy of suppressing the influence of the
noise by a faster control will fail due to the required
increase in field amplitude, inevitably accompanied by
the increase in noise. The purity loss of the evolving state
will be faster due to the increase in noise on the controls.
The order-of-unity decrease of the purity implies that the
relative error in the expectation values of some of the
system operators in the target state is of the order of unity.
This large relative error is characteristic for transforma-
tions between states, where variance of the control opera-
tors is �N2. It is expected that the relative error is small
for target transformations between the ‘‘classical’’ gener-
alized coherent states [32] with respect to the spectrum-
generating algebra, where the maximal variance of the
control operators is �N. An example is transformations
between the spin-coherent states [33] of a quantum spin,
corresponding to Bose-Einstein condensate states of atoms
in the double-well trap. Finally, it is interesting to note
that the scalability of the control paradigm considered in
the present study can be attacked from a different angle
of resource management in quantum computing [34].
Remarkably, the notion of what constitutes a large quan-
tum system is similar in both studies.
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