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A zeptosecond multi-MeV laser pulse may either excite a ‘‘plasma’’ of strongly interacting nucleons or

a collective mode. We derive the conditions on laser energy and photon number such that either of these

scenarios is realized. We use the nuclear giant dipole resonance as a representative example, and a

random-matrix description of the fine-structure states and perturbation theory as tools.
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Purpose. Qualitative Considerations.—With the start of
the construction of ELI (the ‘‘extreme light infrastruc-
ture’’) [1] or with existing ultraintense laser facilities like
the National Ignition Facility (if reconfigured as femto-
second pulse systems) [2,3], nuclear spectroscopy using
intense high-energy laser beams with short pulses has
become a realistic possibility. Indeed, it is envisaged
to generate in the decade ahead pulsed laser light with
photon energies of several MeV and pulse lengths of
10�19 seconds by coherent Thomson backscattering
[4–6]. This will be possible provided that present intense
experimental and theoretical efforts will validate the con-
cept of an electron mirror [6]. These very exciting develop-
ments call for a theoretical exploration of the expected
nuclear excitation processes. In the framework of the nu-
clear shell model (a mean-field approach with a residual
nucleon-nucleon interaction), two scenarios come to mind,
distinguished by time scales. (i) The time scale for the
residual interaction is large compared to the time scale for
laser excitation of individual nucleons. Then a single laser
pulse containing N � 1 photons excites many nucleons
more or less simultaneously. The resulting ‘‘plasma’’ of
excited and interacting nucleons (distantly similar to
the initial stage of a precompound reaction) is instable.
Nucleons excited above particle threshold with low angular
momenta are emitted instantaneously. The remainder
of the system is equilibrated by the residual interaction.
Exciting questions are: What are the mean mass number,
the mean excitation energy, and the mean angular momen-
tum of the resulting compound nucleus? How big are the
spreads of these quantities? Presumably it will be possible
to study compound nuclei at excitation energies and spin
values not accessible so far. (ii) The time scale for the
residual interaction is sufficiently short compared to the
time between two successive photon absorption processes.
Then the nucleus relaxes after each photon absorption
process. Single-photon absorption leads to a collective
mode (typically the giant dipole mode), and multiple pho-
ton absorption within the same laser pulse may lead to
the formation of higher harmonics of that mode. Thus,
scenarios (i) and (ii) lead to extremely different forms of
nuclear excitation.

In this Letter we establish the time scales and the result-
ing conditions on the mean photon energy EL and the
number N of photons relevant for scenarios (i) and (ii).
We do so by studying scenario (ii) in detail. We show that
scenarios (i) and (ii) both occur for realistic choices of EL

and N. We also show that scenario (ii) is dominated by
single-photon absorption.
We focus attention on dipole absorption, the dominant

photon absorption process in nuclei. The dipole mode j10i
is the normalized product of the dipole operator and the
wave function j0i of the nuclear ground state. The dipole
mode is not an eigenstate of the nuclear Hamiltonian Hnuc

and is spread over the eigenstates j�i of Hnuc with eigen-
values E�, � ¼ 1; . . . . Gross features versus excitation

energy E of that spreading are measured by the strength

function SðEÞ ¼ P
� jh10j�ij2�ðE� E�Þ . The average

(overbar) is taken over an energy interval large compared
to the average nuclear level spacing d. In the simplest
model adopted here, SðEÞ has a Lorentzian shape and
is characterized by two parameters [7]: The peak energy

Edip � 80 A�1=3 MeV (where A is the nuclear mass), and

the width �# � 5 MeV (the ‘‘spreading width’’). The re-
sulting broad peak of SðEÞ is referred to as the giant dipole
resonance (GDR). By the uncertainty relation, the time
for the dipole mode to spread over the eigenstates of
Hnuc (the ‘‘equilibration time’’) is �eq ¼ @=�#.
The width �dip for the gamma decay of the GDR to the

nuclear ground state is estimated below and has a typical
value of 5–10 keV. With N coherent photons in the laser
pulse, the characteristic time scale for photon absorption
is �dip ¼ @=ðN�dipÞ. One would expect that excitation of

the GDR [as opposed to scenario (i) considered above]
dominates whenever �dip > �eq, i.e., whenever N�dip < �#.
That simple estimate is modified by two factors, however.
(i) For a short laser pulse with energy spread � (where
we take � � 10 keV corresponding to a pulse length
of � 10�19 s), the Lorentzian shape of the GDR produces
for EL < Edip an additional factor ½�#=ðEL � EdipÞ�2.
(ii) The characteristic cubic dependence of �dip on energy

yields an additional factor ðEL=EdipÞ3. In total, the criterion
for collective excitation of the GDR at energy EL reads
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N < ðEL=EdipÞ3½ðEL � EdipÞ2=ð�dip�
#Þ�. With �dip ¼

10 keV, �# ¼ 5 MeV, Edip ¼ 14 MeV, EL ¼ 7 MeV that

yields N < 5� 103. That bound on N is significantly
larger than the bound N < �#=�dip � 700 obtained from

the naive estimate and shows that even for an intense laser
pulse, excitation of the collective GDR is a realistic alter-
native in nuclei to multiple excitation of individual nucle-
ons provided only that EL is sufficiently far below Edip.

Thus, varying both N and EL provides the exciting oppor-
tunity to investigate scenarios (i) and (ii) separately as well
as the dynamical interplay between.

We support these qualitative arguments by calculating
the probabilities P1 for single–quantum dipole excitation
and P2 for double-quantum dipole excitation as functions
of N, EL, and �. To calculate P2 we use the Brink-Axel
hypothesis [8,9]. The hypothesis implies that single exci-
tation of the dipole mode may be followed either by double
excitation of that mode (i.e., formation of the second
harmonic) or by dipole excitation of the configurations
mixed with the single-dipole mode. We account for both
possibilities and show that for � � �# the contribution
from the Brink-Axel mechanism dominates and yields
P2 ¼ ð1=2ÞP2

1. For values of N and of EL such that
P1 � 1 that relation implies that single-photon absorption
is the dominant process even if N � 1. Our result suggests
that the probability for nuclear excitation by n-fold dipole
absorption may be approximately given by Pn � 2�nPn

1 .
That would imply that in the regime where our approxi-
mations apply (P1 < 1=2 or so) multiple collective nuclear
excitation is unlikely.

For the complex configurations that mix with the single
or double-dipole modes, we use a random-matrix model.
Every such model is based upon the implicit assumption
that the equilibration time (here �eq) is short compared to

the time scale of the physical process of interest (here �dip).

Our use of random-matrix theory is justified if the above-
mentioned conditions for collective excitation of the GDR
are met. We also use perturbation theory to calculate P1

and P2. That is justified if P1 and P2 are sufficiently small
compared to unity. The resulting constraint is the same as
for the use of the random-matrix approach itself.

Hamiltonian.—We write the total Hamiltonian as

H ðtÞ ¼ Hnuc þHðtÞ (1)

where HðtÞ stands for the time-dependent interaction
with the laser pulse. In constructing Hnuc we are guided
by the following qualitative picture [10]. In a closed-shell
nucleus, the dipole mode j10i is a superposition of
one-particle one-hole (1p 1h) excitations. That mode is
embedded in a sea of 2p 2h excitations j0ki where
k ¼ 1; . . . ; K and K � 1. (Here and in what follows the
first label of the state vector counts the number of absorbed
dipole quanta and the second enumerates the states). The
mixing of both kinds of excitations causes the dipole mode
to be distributed over the eigenstates of Hnuc. The absorp-
tion of a second dipole quantum may either lead from the

dipole mode j10i to the double dipole mode j20i (a 2p 2h
state), or it may lead from one of the 2p 2h states j0ki to
the dipole mode j1k0i of that same state (a 3p 3h state).
The double dipole mode j20i is similarly embedded in
a sea of 3p 3h states j0�i with � ¼ 1; . . . ; L. All of the
states j1k0i are embedded in a sea of 4p 4h states j0�i
where � ¼ 1; . . . ;M andM � K. The residual interaction
of the nuclear shell model mixes these configurations, and
both the double dipole mode and the states j1k0i are spread
out over the eigenstates of Hnuc. In modeling this qualita-
tive picture we disregard the fact that single or double
dipole excitation may populate states with different spin
and isospin values. Hnuc is accordingly schematically writ-
ten in matrix form as follows.

Hnuc ¼

E0 0 0 0 0 0 0
0 E1 V1l 0 0 0 0
0 Vk1

~Hð1Þ
kl 0 0 0 0

0 0 0 E2 V2� 0 0

0 0 0 V�2
~Hð2Þ
�� 0 0

0 0 0 0 0 ~H k0l0 Wk0�
0 0 0 0 0 W�l0 ~h��

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

(2)

Here E0 is the energy of the nuclear ground state, while
E1 and E2 are the mean excitation energies of the single
and of the double dipole modes. For simplicity we use a
harmonic-oscillator picture so that E2 � E1 ¼ E1 � E0 ¼
Edip. Moreover we put E0 ¼ 0. The real matrix elements

V1l mix the dipole mode with the 2p 2h states j0li. These
are governed by the K-dimensional Hamiltonian matrix
~Hð1Þ
kl . Similarly, the matrix elements V2� mix the double

dipole mode with the 3p 3h states j0�i. These are gov-

erned by the L-dimensional Hamiltonian matrix ~Hð2Þ
��.

We write ~Hð1Þ
kl ¼ E1�kl þHð1Þ

kl and ~Hð2Þ
�� ¼ E2��� þHð2Þ

��

and assume that both Hð1Þ
kl and Hð2Þ

�� are random matrices,

members of the Gaussian orthogonal ensemble, with no

correlations between the elements of Hð1Þ
kl and of Hð2Þ

��. The

spectra of E1�kl þHð1Þ
kl and of E2��� þHð2Þ

�� both have the

shape of a semicircle centered at E1 and E2, respectively.
The last diagonal block in Eq. (2) describes similarly the
mixing of the states j1k0i with the 4p 4h states j0�i. We

write ~H k0l0 ¼ E2�k0l0 þH k0l0 and ~h�� ¼ E2��� þ h��.

We implement the Brink-Axel hypothesis by puttingH ¼
Hð1Þ. Again, the M-dimensional matrix h�� is assumed

to be a member of the Gaussian orthogonal ensemble.
We calculate the excitation probabilities P1 and P2 as
ensemble averages for K, L, M ! 1. In that limit, the
spreading widths of the single and double dipole mode and
of each of the states j1k0i are given by the generic expres-
sion [11] �# ¼ 2�v2�where v2 stands for the mean square
of the relevant mixing matrix elements and � for the mean
level density in the center of the semicircle. To avoid
unnecessary complexity, we assume that all spreading
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widths have the same value �#. That schematic picture can
be refined if the need arises. We disregard the fact that the
states excited by gamma absorption may decay by particle
or by gamma emission. That is justified because the time
scales associated with such decay are orders of magnitude
larger than both �eq and �dip.

For the time-dependent interaction Hamiltonian HðtÞ,
we use a semiclassical description (justified for N � 1)
and write

HðtÞ ¼ ffiffiffiffi
N

p
gðtÞHdip: (3)

Here Hdip is the time-independent electromagnetic inter-

action operator for a single-photon dipole transition. The

factor
ffiffiffiffi
N

p
accounts for the presence ofN � 1 photons and

the ensuing factor N in the transition rate. The dimension-
less function gðtÞ describes the time dependence of the
short laser pulse. We use the ansatz

gðtÞ ¼ exp½��2t2=ð2@2Þ � i!Lt�: (4)

The Fourier transformation of gðtÞ shows that the mean
energy of the laser pulse is EL ¼ @!L, and the spread
in energy has a width �. Actually, the interaction Hdip

depends on energy, too, via the wave number k. For
� � 10 keV we may put k � kL where kL ¼ EL=ð@cÞ.

In the scheme of Eq. (2) the nonzero matrix elements
of the dipole operator are h10jHdipj0i, h20jHdipj10i, and
h1k0jHdipj0ki. We use the Brink-Axel hypothesis to write

h1k0jHdipj0ki ¼ �kk0 h1kjHdipj0ki. We assume that all non-

zero matrix elements of the dipole operator have the same
value written as hHdipi. That corresponds to a harmonic-

oscillator approximation. To estimate hHdipi, we write the

Hamiltonian Hint describing the interaction with the

electromagnetic field in the Coulomb gauge as Hint ¼
�ð1=cÞ ~j ~A . Here ~j is the current and ~A the vector potential.
In our time-dependent approach the latter has the form
of a wave packet,

~Að ~x;�; tÞ ¼ �
Z

d! exp½�i!t�~gð!Þ exp½i ~k ~r� ~	: (5)

The unit vector ~	 describes the polarization, � indicates

the direction of the vector ~k, and k ¼
ffiffiffiffiffi
~k2

p
and! are related

by k ¼ !=c. The function ~g is the Fourier transform of gðtÞ
in Eq. (4). We determine the normalization constant �

from the requirement that the energy carried by ~A be equal

to EL. We use the dipole approximation. That yields �2 ¼
ð�ELÞ=ð�1=2

@cÞ. Quantization of the electromagnetic field
for individual quanta that have the form of the wave packet

(5) yields for the energy density the expression nðEÞ ¼
1=ð4�3=2�Þ. From Fermi’s golden rule, the total width for
dipole decay is �dip ¼ 2�nðELÞjhHdipij2. Thus,

jhHdipij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1=2�dip�

q
: (6)

For the dipole width we use the Weisskopf estimate, �dip ¼
3
4

e2

@c ðkRÞ2EL. With R ¼ 3� 10�13 cm and EL ¼ 15 MeV

that gives �dip � 10 keV, so that jhHdipij � 10 keV, too.

A somewhat larger value for �dip results when the Thomas-

Reiche-Kuhn sum rule is taken into account. Here we are
interested in order-of-magnitude estimates only, however.
Perturbation Expansion.—We solve the time-dependent

Schrödinger equation in the interaction representation
where the perturbation has the form

~HðtÞ ¼ exp½iHnuct=@�HðtÞ exp½�iHnuct=@�: (7)

We assume that at time t ¼ �1 the nucleus is in the
ground state j0i. We determine perturbatively the proba-
bilities P1 and P2 that at time t ¼ þ1 one or two dipole
quanta have been absorbed.
At t ¼ þ1, the probability amplitude for occupation

of the state j10i reached after single-dipole absorption is

b1 ¼ 1

i@
h10j

Z þ1

�1
dt ~HðtÞj0i

¼
ffiffiffiffi
N

p
i@

hHdipi
Z þ1

�1
dtgðtÞh10j exp½iHnuct=@�j10i;

(8)

and analogously (with h10j in the last line replaced by h0kj)
for b0k. The corresponding amplitudes for the occupation
of the states j20i, j0�i and j1k0i, j0�i reached after double-
dipole absorption are denoted by b2, b�, b1k0 , and b0�. For

example, we have

b0� ¼
�
1

i@

�
2h0�j

Z þ1

�1
dt1 ~Hðt1Þ

Z t1

�1
dt2 ~Hðt2Þj0i

¼
� ffiffiffiffi

N
p
i@

�
2hHdipi2

Z þ1

�1
dt1gðt1Þ

�
Z t1

�1
dt2gðt2Þ

X
ll0
h0�j exp½�iHnucÞt1=@�j1l0i

� �ll0 h0lj exp½ifHnucðt1 � t2Þg=@�j10i: (9)

The average probabilities for single and double dipole
absorption are, thus, given by

P1 ¼
�
jb1j2 þ

X
k

jb0kj2
�
;

P2 ¼
�
jb2j2 þ

X
�

jb0�j2 þ
X
k0
jb1k0 j2 þ

X
�

jb0�j2
�
:

(10)

The big angular brackets indicate the ensemble average.
The first (last) two terms that contribute to P2 are due to
double excitation of the dipole mode and to the Brink-Axel
hypothesis, respectively.
Averages.—By way of example we perform the en-

semble average for P1 and focus attention on the sum
of the squares of the time-dependent matrix elements in
Eq. (8). Using completeness and a simple identity we
obtain for these
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�
h10jexp½iHnucðt1� t2Þ=@�j10i

�

¼
Z þ1

�1
d"exp½i"ðt1� t2Þ=@�

�
1

2i�

�
h10j 1

"��Hnuc

j10i

��h10j 1

"þ�Hnuc

j10i
��

: (11)

We use Eq. (2) to write�
h10j 1

"� �Hnuc

j10i
�

¼
�
h10j 1

"� � Edip � V1ð"� �Hð1ÞÞ�1Vy
1

j10i
�

¼ 1

"� Edip � ði=2Þ�# : (12)

Using Eq. (4) for gðtÞ and carrying out the time integrals
[see Eqs. (8)], we find that " is confined to an interval of size
� aroundEL. Since� � �#, the argument of the expression
in Eq. (12) can be taken at " ¼ EL. The remaining integra-
tion can be done. With the help of Eq. (6) that yields

P1 ¼
2�N�dip�

#

ðEL � EdipÞ2 þ ð1=4Þð�#Þ2 : (13)

The result (13) is intuitively appealing and clearly displays
the suppression factors �#2=ðEL � EdipÞ2 and ðEL=EdipÞ3
mentioned above that come into play for EL < Edip.

The calculation of P2 proceeds similarly but is more
involved. We use operator identities such as

h10j 1

"�2 �Hnuc

j0ki

¼ h10j 1

"�2 � Edip � V1ð"�2 � Edip �Hð1ÞÞ�1Vy
1

j10i

� h10jV1

1

"�2 � Edip �Hð1Þ j0ki: (14)

That leads to products of terms each containing Hð1Þ in the
denominator. We neglect the correlations between eigen-

values ofHð1Þ in different factors because such correlations
extend over an energy range measured in units of the mean
level spacing d while the range of the terms in Eq. (14) is
given by �# � d. For the last two terms in the second of
Eq. (10) we obtain�X

k0
jb1k0 j2 þ

X
�

jb0�j2
�
¼ 1

2
P2
1 (15)

with P1 given by Eq. (13). The calculation of the first
two terms yields a contribution that in comparison to
Eq. (15) is small of order �=�#. Thus for all values of EL

the contribution to P2 from double excitation of the dipole
mode is negligibly small in comparison with that from
the Brink-Axel mechanism in Eq. (15). As a result we find

P2 ¼ 1
2P

2
1: (16)

The factor 1=2 in Eq. (16) is due to the time ordering in
Eqs. (9). Thus, we expect that for arbitrary positive integer
n we have Pn ¼ 2�nPn

1 .
Conclusions.—We have established the time scales and

the resulting values for mean photon energy EL and mean
photon number N required for the realization of either of
the two scenarios mentioned in the Introduction. This was
done with the help of a random-matrix model for scenario
(ii) for which we have calculated the probabilities P1 and
P2 for single and double nuclear dipole absorption. Our
assumptions and approximations require both P1 and P2

to be small compared to unity. In that case, scenario (ii)
applies. Equation (13) shows that in the tails of the GDR
that condition is easily met even for an intense laser pulse.
Ways of detecting such collective nuclear excitation ex-
perimentally are discussed in Ref. [12]. Double photon
absorption is dominantly due to the Brink-Axel mechanism
(as opposed to double excitation of the dipole mode). For
P1 small compared to unity, single-photon absorption is
the dominant mechanism while P2 � P1.
With increasing N, the time for dipole absorption

�dip eventually becomes small compared to the nuclear

equilibration time �eq, and the competition between col-

lective excitation and the formation of a strongly interact-
ing nucleon plasma is decided in favor of the latter.
Equation (13) shows that in the center of the GDR (EL �
Edip), that will happen already for fairly small values of

N � 10 or so. As N is increased, the process spreads to the
tails of the GDR. It is a challenge to attain a theoretical
understanding of scenario (i), and of the interplay between
both scenarios.
I thank P. Thirolf for valuable advice, D. Habs for
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helpful suggestions.
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