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The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires

that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy.

An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test

of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the

observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which

both axes of the BTFR can be measured independently of the theories being tested and without the

systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall

precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is

attributable entirely to observational uncertainty, consistent with a single effective force law.
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The mass discrepancy problem in extragalactic systems
is well established. When known dynamical laws are ap-
plied to these systems, the observed mass in stars and gas
falls well short of explaining the observed motions. A
classic example is that the rotation curves of disk galaxies
tend to become roughly flat (Vf � const) when they should

be falling in a Keplerian (V / r�1=2) fashion. The common
interpretation for this phenomenon is dark matter.
However, a logical alternative is that the dynamical laws
that lead to the inference of dark matter need to be revised
on the scales appropriate to galaxies.

One striking fact about extragalactic systems is that they
are many orders of magnitude larger than the solar system
in which conventional dynamics is extraordinarily well
tested. One idea is thus to modify gravity on some suitably
large length scale such that the apparent need for dark
matter would be manifest in galaxies but not in the solar
system. Such size-dependent ideas fail and can generically
be excluded [1]. However, there are other ways in which
galaxies differ from the solar system. For example, the
centripetal acceleration required to keep a star in orbit in
a galaxy is very much lower than that experienced by the
planets orbiting the sun: �10�10 ms�2 vs 6� 10�3 ms�2

for Earth.
The modified Newtonian dynamics (MOND) [2] posits a

new constant with dimensions of acceleration, a0, which
defines the boundary between conventional dynamics and a
new domain of dynamics. The conventional dynamics hold
in the limit of high acceleration, a � a0, and the modified
regime occurs in the limit of low accelerations, a � a0.
The value of a0 must be determined observationally [3], but
once specified is constant. In the modified regime, rotation
curves become asymptotically flat far from a central mass
[2]. This follows from the scale invariance symmetry of the
equations of motion under transformations ðt; rÞ ! ð�t; �rÞ
[4]. An absolute relation between the asymptotically flat
rotation velocity Vf and the total mass Mb,

a0GMb ¼ V4
f; (1)

follows uniquely on dimensional grounds.
Rotationally supported galaxies follow an empirical re-

lation between mass and rotation velocity known as the
baryonic Tully-Fisher relation (BTFR) [5]. This empirical
relation can, in principle, provide a quantitative test of the
prediction of MOND. In order to do so, we require inde-
pendent, accurate measurements of bothMb and Vf. While

the latter is readily obtained from resolved rotation curves,
mass determinations are more problematic.
The baryonic mass is the sum of both stars and gas:

Mb ¼ M? þMg. A great deal is known about stars, but

stellar mass estimates for galaxies are subject to a system-
atic uncertainty of�0:15 dex because of uncertainty in the
stellar mass function and some details of stellar evolution
[6]. This level of systematic uncertainty precludes an un-
ambiguous test of (1) with star dominated spirals [7].
A clean test of the BTFR predicted by MOND follows if

we can identify a class of galaxies where stars do not
dominate the baryonic mass budget. Atomic gas typically
dominates the mass of nonstellar material in disk galaxies.
Its mass follows directly from the distance to each galaxy,
the measured 21 cm flux, and the physics of the spin flip
transition of hydrogen. It does not suffer from the system-
atic uncertainty of stellar mass.
Late type, low surface brightness disk galaxies fre-

quently have gas masses in excess of their stellar masses
[8]. When Mg >M?, the systematic uncertainty in stellar

mass is reduced to a minor contributor to the error budget
(Fig. 1). Thanks to recent work [9–11], it is now possible
to assemble a large sample (47) of galaxies with Vf mea-

sured from resolved rotation curves that satisfy the gas
domination criterion Mg >M?. This property enables a

novel test of MOND with no free parameters. BothMb and
Vf are directly measured and, for the first time, are not

dominated by systematic uncertainties. Moreover, these
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galaxies are unambiguously in the deep modified regime
where (1) holds, with V2

f=rmax � a0=10. Here the distinc-

tion between MOND and �CDM is most pronounced.
Figure 2 shows the gas rich galaxy data together with the

predictions of MOND and the cold dark matter model with
a cosmological constant (�CDM). The data fall precisely
where MOND predicts. This happens with no fitting what-
soever—there are zero free parameters in Fig. 2.
Computing �2 with the slope fixed to 4 and the normal-
ization fixed at the previously determined value of a0 [3]
gives �2 ¼ 44:3 for 46 degrees of freedom for a reduced
�2
� ¼ 0:96. If we treat a0 as a fit parameter and minimize

�2 with the slope fixed to 4, we find a0 ¼ 1:24� 0:14�
10�10 m s�2. This is indistinguishable from the previous
value, and �2 actually increases because we have added an
unneeded degree of freedom: �2

� ¼ 0:99. If we further treat
the slope as an additional free parameter, we find
3:8� 0:2. This does not differ significantly from the
MOND prediction of 4, nor does it improve the fit: �2

� ¼
0:98. The data therefore provide no reason to suspect a
BTFR that differs in any way from that predicted by
MOND.
The specific BTFR that the data follow is unique to

MOND. Indeed, to the best of my knowledge, MOND is
the only theory to make a strong a priori prediction for the
BTFR. The dark matter paradigm makes no comparably
iron-clad prediction.
The expectation in �CDM is that total mass (both dark

and baryonic) scales with rotation velocity as M� ¼
ð�=2Þ�1=2ðGH0Þ�1V3

�. These quantities are defined at a

radius where the enclosed density exceeds the cosmic
critical density by a factor �. The virial radius occurs at
� � 100 [12]. This notional radius is well beyond the
reach of observations. To plot the �CDM line in Fig. 2,
we assume Vf ¼ Vvir and Mb ¼ fbMvir where fb ¼ 0:17

is the cosmic baryon fraction [13]. This nominal expecta-
tion has the wrong slope and the wrong normalization.
In order to reconcile �CDM with the data, we must

invoke additional parameters. The simplest assumption is
that only a fraction fd of the baryons in a halo are detected:
Mb ¼ fdfbMvir. Once we have granted ourselves this free-
dom, a galaxy could, in principle, have any fd < 1 and
reside anywhere below the�CDM line in Fig. 2. From this
perspective, it is puzzling that galaxies reside only along
the line predicted by MOND.
Reproducing the observed BTFR in �CDM requires a

remarkable degree of fine-tuning. The detected baryon

FIG. 2 (color online). The BTFR for gas dominated galaxies.
The sum of detected baryonic mass, stars and gas, is plotted
against the flat rotation velocity Vf (symbols as per Fig. 1). Both

mass and velocity are measured independently of either MOND
or �CDM. The data are well removed from the expectation of
the standard cosmology (upper line), but follow the prediction of
MOND (lower line) with no fitting whatsoever.

FIG. 1 (color online). (a) The mass of stars and gas in rotating galaxies. Triangles represent star dominated spirals [7] with M? >
Mg. The data for gas rich galaxies with M? <Mg come from several independent sources denoted by circles [9], squares [10], and

stars [11]. (b) The fraction of the error budget �sys=�tot contributed by the systematic uncertainty in stellar mass (�sys � 0:15 dex [6])

as a function of the total baryonic mass Mb ¼ M? þMg. Our knowledge of the masses of star dominated galaxies is limited by this

systematic uncertainty, but it has little effect on gas dominated galaxies.
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fraction must follow the formula logfd ¼
logðVf=100 km s�1Þ � 1:2. Astrophysical feedback is

often invoked to cause fd < 1, but provides no satisfactory
explanation for why this particular tuning of fd arises.

A further test is provided by the scatter in the observed
relation. In�CDM, any scatter in fd translates directly into
the BTFR: there should be at least some intrinsic scatter.
In MOND, the BTFR is a consequence of the force law, and
should have no intrinsic scatter.

Figure 3 shows a histogram of the ratio a ¼ V4
f=ðGMbÞ

formed from the data. This represents the scatter around
the MOND line in Fig. 2. If the data are randomly distrib-
uted, they should approximate a gaussian whose width is
dictated by the size of the error bars. Such a Gaussian is
shown in Fig. 3. It is not fit to the data; it is simply centered
on the previously determined value of a0 [3] with a width
corresponding to the uncertainty in the data. Only random
errors are considered here; the residual systematic uncer-
tainty in the stellar mass corresponds to a small shift in the
total mass and should not introduce additional scatter.

Observational uncertainty suffices to explain the scatter
in the data. The data are consistent with a BTFR of zero
intrinsic width. This is natural if the BTFR is imposed by
the force law, as in MOND. It is not expected in �CDM
where there should be many sources of scatter.

From the perspective of cosmology, it is disturbing that
MONDworks at all. If�CDM is the correct paradigm, this
should not happen [14]. Yet when pressed into a new
regime where the predictions of the two theories are dis-
tinct, MOND outperforms �CDM.

This is not the first time that strong predictions of
MOND have been realized. For example, MOND predicted
in advance that galaxies of both high and low surface

brightness would fall on the same BTFR [15,16], contrary
to the natural expectation of purely Newtonian gravity
[17,18]. It is well established that MOND provides good
fits to the detailed shapes of rotation curves with only the
stellar mass-to-light ratio as a free parameter [19]. The
required mass-to-light ratios are in good agreement with
stellar population synthesis models [20]. A simple model
motivated by MOND provided the only successful a priori
prediction of the first-to-second peak amplitude ratio of
the acoustic peaks of the cosmic background radiation:
A1:2 ¼ 2:4 predicted [21] vs 2:34� 0:09 measured [22].
It is rare for a noncanonical theory to have so many
predictive successes.
MOND also has its share of problems. The same ansatz

that correctly predicted the second acoustic peak amplitude
also predicts a lower third peak than is observed [23]. This
does not falsify MOND, but it does imply that a generally
covariant parent theory should provide an effective forcing
term [24].
The most serious observational problem facing MOND

is the dynamics of rich clusters of galaxies. These appear to
weigh more than can be accounted for with the observed
baryons even with the modified dynamics [25,26]. This
residual mass discrepancy is roughly a factor of 2 in mass.
On the one hand, this is very disturbing—a theory that
seeks to eliminate the need for cosmic dark matter itself
suffers a missing mass problem. On the other hand, this is
less severe than the missing baryon problem in �CDM,
where dwarf galaxies are missing 99% of the baryons that
should be associated with their dark matter halos [27]. So
both theories suffer a missing baryon problem, albeit of
different amplitudes in systems of vastly different scale.
While some of the mass in clusters appears to be dark,

even in MOND, there is nothing that requires this unseen
mass to be in some new form of nonbaryonic particle.
Indeed, big bang nucleosynthesis implies the existence of
considerably more baryons than have so far been detected
[28]. If only a fraction of these missing baryons reside in
clusters it would suffice to resolve the residual mass dis-
crepancy suffered by MOND.
Perhaps the most prominent example of a cluster with a

serious residual discrepancy in MOND is the bullet cluster
[29]. In this system, the gravitational lensing of back-
ground galaxies indicates that the mass is offset from the
X-ray plasma. This is the same residual mass discrepancy
that is seen in all rich clusters. While the bullet cluster is
frequently cited as evidence against MOND, it is also
problematic for �CDM. The subclusters that compose
the bullet cluster collided at a remarkably high velocity
(� 4700 km s�1). This is exceedingly unlikely in �CDM,
occurring with a probability of only a few parts in a billion
[30]. In contrast, such high collision velocities are natural
to MOND [31]. Taken at face value, the bullet cluster
would seem to simultaneously support and falsify both
theories with equal vigor.

FIG. 3. Histogram of the measured values a ¼ V4
f=ðGMbÞ. The

data are consistent with a normal distribution (smooth curve) that
is centered on the previous determination of a0 [3] with a width
specified by the mean uncertainty � ¼ 0:24 dex. This consis-
tency implies a universal acceleration scale with negligible
intrinsic scatter. This is expected in MOND, but poses a fine-
tuning problem for �CDM.
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Given the nature of astronomical data, some exceptions
to any theory are to be expected. What is surprising in
the case of MOND is that it continues to enjoy predictive
successes at all. These motivate the search for a more
complete gravitational theory that contains MOND in the
appropriate limit [32–35].

It is possible that nonbaryonic cold dark matter does not
exist. If it does, and �CDM is the correct solution, the
challenge is to understand the empirical systematics en-
capsulated in the simple MOND formula. These are not
native to the current cosmological paradigm [14] but must
be explained by any successful theory.

Another possibility is that dark matter particles have
properties that impose MOND-like phenomenology
[36–38]. In this case, it is desirable to have dark matter
that behaves like standard cold dark matter on large scales,
but which interacts with normal matter so as to impose the
MOND phenomenology in galaxies. This suggests some
strong new form of interaction between dark matter and
baryons.

If MOND is essentially correct in that it is pointing
towards an extension of gravitational theory, then the ex-
periments seeking to detect dark matter will find null
results. This would also be the case if dark matter has a
different nature than currently presumed. If dark matter is
detected, then the MOND formula is still useful as a
phenomenological constraint on the effective force law in
spiral galaxies. In any case, the predictive power of the
simple formula proposed by Milgrom [2] is telling us
something profound about nature.
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