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We examine tensor perturbations around a de Sitter background within the framework of Ashtekar’s

variables and its cousins parameterized by the Immirzi parameter �. At the classical level we recover

standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties.

In the low energy limit we find a second quantized theory of gravitons which displays different vacuum

fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive)

energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the

vacuum fluctuations depends on � and the ordering of the Hamiltonian constraint, and it would leave a

distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity

to observational test.
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Loop quantum gravity is a promising scheme for quan-
tizing the gravitational field [1–3]. At its core lies the idea
that the connection (or its holonomies), rather than the
metric, should be the central gravitational variable driving
quantization. This permits borrowing a number of non-
perturbative quantization techniques from non-Abelian
gauge theories, notably the Wilson loop. The menace of
nonrenormalizability can then be skirted, leading to a finite
theory. Unfortunately the end product has not always made
easy contact with the real world, with familiar concepts
(such as smooth manifolds or gravitons) only recently
finding a niche in the theory [4,5]. A reexamination of
the theory from the perturbative viewpoint is in order, to
establish whether it makes more pedestrian physical sense.

There have been a number of past attempts to stave off
the above criticism. Loop quantum cosmology is a semi-
classical scheme for deriving effective Hamiltonians [6];
however its links with the parent theory can be flimsy.
Graviton states (and their loop representations) were iden-
tified early on in loop quantum gravity [7], but this work
contained a number of technical deficiencies (spelled out in
this Letter). More recently, following on from [7], Smolin
proposed that fluctuations around the Kodama state
(a well-known exact solution to the theory [8]) could
provide well-defined representations for gravitons in a
de Sitter background [9]. Witten claimed that such grav-
itons would be pathological because one of the helicities
would have negative energy [10]. This was allegedly dis-
proved in [11], but again in the shadow of technical errors.

In this Letter we reexamine the perturbative status of
loop quantum gravity following a simple guiding principle:
we never stray far from standard cosmological perturbation
theory [12]. Clearly, well established classical results in
cosmology must have exactly equivalent descriptions in
Ashtekar’s formalism; if they do not something has
gone awry. Furthermore the loop quantization procedure
should be mapped, in some approximation, onto the usual

inflationary calculation of tensor vacuum quantum fluctu-
ations. If differences arise one should understand their
origin, and decide ‘‘who’s at fault.’’
Crucial to this exercise are the reality conditions that

supplement Ashtekar’s formalism. In order for the central
concept of duality to apply to a Lorentzian signature the
geometry must be complexified. Additional constraints
then ensure that ‘‘on shell’’ the geometry is real. This is
implemented by the inner product with which the Hilbert
space is endowed, and the implicit selection of physical
(i.e., normalizable) states. In this Letter we show that
physically sensible results can only be obtained if we
include in all expansions both positive and negative fre-
quencies. These should be associated with graviton and
antigraviton states, to be identified only after reality con-
ditions are imposed.
Once this simple point is recognized a number of mys-

teries evaporate. We reproduce Witten’s negative energy
gravitons [10], originally derived for Yang-Mills theories
only. For example, for the self-dual (SD) connection we
find that right-helicity (R) positive-frequency (þ) and left-
helicity (L) negative-frequency (�) modes have positive
energy, whereas R� and Lþ modes have negative energy.
However we discover that the pathological modes are not
normalizable under the inner product representing the
reality conditions. Therefore they do not belong to the
physical Hilbert space, and indeed these modes do not
exist classically, i.e., by evaluating the SD connection
using the equations of motion.
The only physical modes are the usual particles: right-

and left-handed gravitons with a positive energy spectrum,
albeit described chirally (the right graviton appears in the
positive frequency of the SD connection, the left in its
negative frequency). But a dramatic novelty creeps in.
For a standard ordering of the Hamiltonian constraint
only the negative frequency needs to be normal ordered.
Thus a significant difference appears in the inflationary
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calculation for tensor vacuum fluctuations, using the SD
connection: a (scale-invariant) spectrum is produced, but
only for left gravitons. No right gravitons are produced.

Had we employed the anti-SD (ASD) connection, the
description would be reversed, leading to vacuum fluctua-
tions containing only right-handed gravitons. More gener-
ally, Ashetkar’s SD and ASD connections belong to a class
of connections parametrized by the Immirzi parameter, �.
They hail from a canonical transformation applied to gen-
eral relativity, resulting in equivalent classical descriptions,
but inequivalent quantum theories. The main result in this
Letter is a reflection of this fact at the perturbative level.
We predict a � dependent chirality in the gravitational
wave background. The effects on the polarization of the
cosmic microwave background are unique [13], opening
up the doors to an observational test of quantum gravity.

As our starting point we take metric:

ds2 ¼ a2½�d�2 þ ð�ij þ hijÞdxidxj� (1)

where hij is a transverse and traceless (TT) tensor. For

definiteness the background is de Sitter (i.e., a ¼ �1=H�,
with H2 ¼ �=3 and �< 0) but what follows can be re-
peated with other backgrounds, and perturbations around
Minkowski space-time can be recovered by setting H ¼ 0.
With a set of conventions fully spelled out in [14] (and
following [3]) the connection is given by Ai ¼ �i þ ��0i,
with �i ¼ � 1

2 �
ijk�jk. Here � is the Immirzi parameter, best

introduced by the Holst action [2,5,9]. The SD and ASD
connections correspond to � ¼ �i. We then solve for the
background using the Einstein-Cartan equations and expand

the canonical variables as Ai
a ¼ �Ha�i

a þ aia
a and Ea

i ¼
a2�a

i � a�eai , where Ea
i is the densitized inverse triad,

canonically conjugate to Ai
a. Throughout this Letter we

will adopt the following convention: we define �eia via the
triad eia ¼ a�i

a þ �eia; we then raise and lower indices in all
tensors with the Kronecker �, possibly mixing group and
spatial indices. This simplifies the notation and is unambig-
uous if it is understood that �e is originally the perturbation
in the triad. It turns out that �eij is then proportional to the

‘‘v’’ variable beloved by cosmologists [12].
We now come to an important technical point. As in the

usual cosmological treatment we subject the perturbations
to Fourier and polarization expansions; however the
Ashtekar formalism presents us with some subtleties. If
reality conditions are yet to be enforced there must be
graviton and antigraviton modes, so it is essential not to
forget the negative frequencies in all expansions, and
ensure that they are initially independent of the positive
frequencies. Furthermore, for a clearer physical picture, it
is convenient to use the quantum field theory convention
stipulating that for free modes the spatial vector k points in
the direction of propagation for both positive and negative
frequencies. This is a simple point, but spurious couplings
between k and �k modes otherwise come about, e.g.,
reality conditions constrain gravitons moving in opposite
directions, which is physically nonsensical.

Bearing this in mind we adopt expansions:

�eij ¼
Z d3k

ð2�Þ3=2
X
r

�rijðkÞ ~�eðk; �ÞerþðkÞ

þ �r?ij ðkÞ ~�?
e ðk; �Þeyr�ðkÞ

aij ¼
Z d3k

ð2�Þ3=2
X
r

�rijðkÞ ~�rþ
a ðk; �ÞarþðkÞ

þ �r?ij ðkÞ ~�r�?
a ðk; �Þayr�ðkÞ

(2)

where, in contrast with previous literature (e.g., [7,11]),
erp and arp have two indices: r ¼ �1 for right and left

helicities, and p for graviton (p ¼ 1) and antigraviton
(p ¼ �1) modes. In a frame with direction i ¼ 1 aligned
with k the polarization tensors are:

�ðrÞij ¼ 1ffiffiffi
2

p
0 0 0
0 1 �i
0 �i �1

0
@

1
A: (3)

The base functions have form ~�ðk; �Þ ¼ �ðk; �Þeik�x and
we impose boundary conditions �ðk; �Þ � e�ik� when
jk�j � 1 for both þk and �k directions (k ¼ jkj> 0
throughout this Letter). Only then does k point in the
direction of propagation, as required. This convention has
the essential advantage of identifying the proper physical
polarization (until we know in which sense the mode is
moving we cannot assign to it a physical polarization).
The functions �e and �a can in principle be anything,
with the amplitudes erp and arp carrying the necessary

time dependence. We may choose � so that they carry the
full time dependence. Hamilton’s equations then merely

confirm that the amplitudes are constant, but ~�rp
a should

have both r and p dependence. In these expansions
we have already selected the physical degrees of freedom
(i.e., the Gauss and diffeomorphism constraints have been
implemented).
In order to canonically quantize the theory we need its

Hamiltonian formulation. We will do this in detail else-
where [14] but stress that we can read off the answer from
cosmological perturbation theory [12]. Functions �e sat-
isfy the same equation as the variable ‘‘v’’ used by cos-
mologists. Therefore, in a de Sitter background:

�00
e þ

�
k2 � 2

�2

�
�e ¼ 0; (4)

where 0 denotes derivative with respect to conformal time.
This has solution:

�e ¼ e�ik�

2
ffiffiffi
k

p
�
1� i

k�

�
; (5)

where the normalization ensures that the amplitudes erp
become annihilation operators upon quantization. In addi-
tion, connection and metric are related by Cartan’s torsion-
free condition T ¼ deþ � ^ e ¼ 0, solved by
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��0
i ¼

1

a
�e0ijdxj (6)

��ki ¼ � 2

a
@½k�ei�jdxj: (7)

With the conventions given above the second of these
equations implies ��i ¼ 1

a �
ijk@j�ekldx

l, so that

aij ¼ �ikl@k�elj þ ��e0ij: (8)

Inserting decomposition (2) into this expression and using
the relation �nij�

r
ilkj ¼ irk�rnl we get:

�rp
a ¼ �p�0

e þ rk�e; (9)

(we have assumed arp ¼ erp). Inside the horizon

(jk�j � 1) this has the important implication that �rp
a ¼

ðr� ip�Þk�e leading to the result that the SD connection
(� ¼ i) is made up of the right-handed positive frequency
of the graviton and the left-handed negative frequency of
the antigraviton. The ASD connection contains the other
degrees of freedom (this result was derived long ago [15]
but seems to have been forgotten in all subsequent work).
For other values of � this is shared differently, and as the
modes leave the horizon (jk�j � 1) the classification
breaks down.

The theory can now be quantized from Poisson brackets
fAi

aðxÞ; Eb
j ðyÞg ¼ �l2P�

b
a�

i
j�ðx� yÞ. They imply commuta-

tion relations for the perturbative variables:

½aiaðxÞ; �ebj ðyÞ� ¼ �i�l2P�
b
a�

i
j�ðx� yÞ: (10)

These are valid before the Gauss and vector constraints are
enforced and must be replaced by a TT projected � func-
tion upon gauge fixing. Once this is done (details to be
presented in [14], but see [16]) we have:

½~arpðkÞ; ~eysqðk0Þ� ¼ �i�p
l2P
2
�rs�p �q�ðk� k0Þ; (11)

where �q ¼ �q and ~arp ¼ arp�
rp
a and ~erp ¼ erp�e. In

addition we must fix the inner product of the Hilbert
space to implement the reality conditions. The reality of
the metric (�eij ¼ �e?ij) implies erþðkÞ ¼ er�ðkÞ, i.e., the
graviton and antigraviton are identified, polarization by
polarization, mode k by mode k. This is eminently
sensible. Reality conditions should never relate different
polarizations, or modes k and�k, since gravity waves are
real (even if a complex notation is used). The presence of
such spurious couplings in the literature [7,11] merely
signals that the direction of motion for a given mode
was not properly identified, and in consequence the polar-
ization incorrectly assigned. This is avoided by using
expansions (2).

For the connection, the reality and torsion-free condi-
tions are combined: aij is allowed to be complex but

only to the extent that’s consistent with the metric being
real, given the torsion-free condition. However in the
Hamiltonian formalism we only need to impose ReAi ¼
�iðEÞ, leaving it for the dynamics to discover that

ImAi ¼ j�j�0i. Thus, aij þ �aij ¼ 2a��ij ¼ 2�ink@n�ekj,

which in terms of expansion (2) becomes:

~a rþðk; �Þ þ ~ar�ðk; �Þ ¼ 2rk~erþðk; �Þ: (12)

We defer the reality conditions’ implementation via the
inner product until after we have the Hamiltonian.
It is straightforward to repeat what follows for a general

�, but for clarity we will make our point by presenting
calculations for � ¼ �i only, which turn out to be the
extreme cases. Then, the Hamiltonian reduces to:

H ¼ 1

2l2P

Z
d3xNEa

i E
b
j �ijkðFk

ab þH2�abcE
c
kÞ: (13)

Expanding, and keeping only second order terms quadratic
in first order perturbations leads to:

2
1H ¼ 1

2l2P

Z
d3x½�aijaij þ 2�ijk�eli@jakl

� 2�Ha�eijaij � 2H2a2�eij�eij�: (14)

To this one must add the boundary term: H BT ¼
� 1

l2P

R
d�aN�ijkE

a
i E

b
jAbk which perturbatively becomes:

2
1H BT ¼ 1

l2P

R
d�i�ijk�eljalk. Writing it as the volume in-

tegral we find for modes inside the horizon:

H eff ¼ 1

2l2P

Z
d3x½�aijaij � 2�ijkð@j�eliÞakl�; (15)

to be identified with the Hamiltonian of the effective
quantum field theory representing the theory perturba-
tively. It is easy to see that ‘‘on shell’’ [i.e., using (8)]
this is the stress-energy tensor of gravitational waves, with
the usual kinetic and gradient terms.
We proceed to find the quantum Hamiltonian for

kj�j � 1. We assume an EEF ordering but what follows
can be adapted to other orderings. Inserting expansions (2)
into (15) we find:

H eff ¼ 1

l2P

Z
d3k

X
r

gr�ðkÞgrþð�kÞ þ gr�ðkÞgyr�ðkÞ

þ gyrþðkÞgrþðkÞ þ gyrþðkÞgyr�ð�kÞ; (16)

with:

grþðkÞ ¼ ~arþðkÞ (17)

gyrþðkÞ ¼ �~ayr�ðkÞ þ 2kr~eyr�ðkÞ (18)

gr�ðkÞ ¼ �~arþðkÞ þ 2kr~erþðkÞ (19)

gyr�ðkÞ ¼ ~ayr�ðkÞ (20)

where we used �rijðkÞ�s?ij ðkÞ ¼ 2�rs [note that with our

conventions �rijð�kÞ ¼ �r?ij ðkÞ]. We have identified

(anti)-graviton creation and annihilation operators, gyrp
and grp, as in [7]. From (11) they inherit the algebra:

PRL 106, 121302 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 MARCH 2011

121302-3



½grpðkÞ; gysqðk0Þ� ¼ �i�l2PðprÞk�rs�pq�ðk� k0Þ: (21)

As in [10], half the particles are found to have negative
energy (those with i� ¼ pr). The Hamiltonian also con-
tains pathological particle production terms: the first and
last of (16). These features are removed once the inner
product is defined.

Notice first that the reality conditions amount to de-

manding that gyrp are indeed the Hermitian conjugates of
grp. This fully fixes the inner product [7,17]. We work in a

holomorphic representation for wave functions � which

diagonalizes gyrp, i.e.: gyrp�ðzÞ ¼ zrp�ðzÞ (z represents

collectively all the zrpðkÞ). Then, (21) implies:

grp� ¼ �i�l2PðprÞk
@�

@zrp
: (22)

With ansatz h�1j�2i ¼
R
dzd�ze�ðz;�zÞ ��1ð�zÞ�2ðzÞ, condi-

tion h�1jgyrpj�2i ¼ h�2jgrpj�1i therefore requires:
�ðz; �zÞ ¼

Z
dk

X
rp

pr

i�kl2P
zrpðkÞ�zrpðkÞ; (23)

fixing h�1j�2i. Integrating grp�0 ¼ 0 leads to the vacuum

�0 ¼ hzj0i ¼ 1. Particle states are monomials in the re-

spective variables,�n ¼ hzjni / ðgyrpÞn�0 ¼ znrp. With the

inner product just derived these are not normalizable for
i� ¼ pr. Therefore such modes should be excluded from
the physical Hilbert space, and this removes all pathologies
found in the Hamiltonian. We stress that the quantum
modes we have disqualified do not exist classically [see
discussion after (9)]. For example for � ¼ i the only
physical modes are GR ¼ gRþ and GL ¼ gL�.

We therefore regain the usual physical Hamiltonian but
with one major difference. For � ¼ i, for example,

H phy
eff � 1

l2P

R
dkðGLG

y
L þGy

RGRÞ and so only the left-

handed graviton needs to be normal ordered. Following
the standard inflationary calculation (extrapolating the
vacuum expectation value Vr of a mode from jk�j � 1
to jk�j � 1) we discover a scale-invariant spectrum with
left gravitons only. Repeating this calculation (see [14], for
details) for general � shows that:

H phy
eff �

1

2l2P

Z
dk

X
r

½GrG
y
r ð1þ ir�ÞþGy

r Grð1� ir�Þ�

so, after normal ordering, right and left particles are exactly
symmetric, but a chiral Vr is found with:

VR � VL

VR þ VL
¼ i�: (24)

Strictly speaking this calculation only covers imaginary
� in the range �i 	 � 	 i, but an extension for all �
(including real) will be presented elsewhere [14]. For
standard Palatini gravity � ¼ 0 and no effect is predicted.

In a longer paper [14] we will spell out the various steps
of this calculation and generalize its scope. The relation
with other work [4,8,11,18] will also be examined. We note
that in [4] a chiral contribution was found for the graviton

propagator. The relation with our results should not pass
unnoticed but remains tantalizing, since [4] employed a
Euclidean signature and a real �. A generalized formula
(24), combining � with ordering prescriptions will be
presented in [14] (note that FEE ordering reverses the
above argument; EFE ordering produces no chirality at
all). In any quantum mechanical theory ordering issues are
ultimately resolved by their experimental consequences.
Quantum gravity is no exception. We have provided one
such experimental probe.
In the meantime we have shown how a perturbative

reexamination of quantum gravity can be fruitful. We hope
to have cleared up a few misconceptions and paradoxes.
Above all, we derived a striking prediction for the theory,
which could be tested in upcoming cosmic microwave back-
ground polarization experiments. There are other mecha-
nisms to generate gravitational chirality (e.g., [18,19]), but
the one pointed out in this Letter is by far the simplest. As
explained in [13], even moderate chirality in the gravita-
tional wave background would render its detection easier.
‘‘Catching two pigeons with one stone’’ was the expression
used in [13] to qualify the ensuing state of affairs.
We thank M. Bojowald, G. Calcagni, J. Halliwell, C.

Isham, H. Nicolai, L. Smolin, J. Sonner, and K. Stelle for
advice.
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