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We present explicit results for the product of all horizon areas for general rotating multicharge black

holes, both in asymptotically flat and asymptotically anti–de Sitter spacetimes in four and higher

dimensions. The expressions are universal, and depend only on the quantized charges, quantized angular

momenta and the cosmological constant. If the latter is also quantized these universal results may provide

a ‘‘looking glass’’ for probing the microscopics of general black holes.
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Explaining the origin of the black-hole entropy S ¼ 1
4A

at the microscopic level, where A is the area of the outer
event horizon, is an outstanding problem for quantum
theories of gravity. Significant insights have been achieved
for supersymmetric, asymptotically flat, multicharged
black holes in four and five dimensions [1], where the
microscopic degrees of freedom can be explained in terms
of a two-dimensional conformal field theory. More recent
work has focused on the microscopic entropy of extreme
rotating solutions [2]. By contrast, the detailed microscopic
origin of the entropy of nonextremal rotating charged black
holes remains an open problem, although recently there has
been some promising progress [3].

Greybody factors (i.e., absorption coefficients) and ra-
diation spectra provide another approach to probing the
black-hole structure. An intriguing property of multi-
charged rotating black holes (in maximally supersymmet-
ric supergravity theories) is that their wave equations are
separable. The radial equation has poles at the locations of
the horizons, where the radial component of the metric
degenerates, with residues proportional to the inverse
squares of the surface gravities, and so the Green functions
are sensitive to the geometry near all the black-hole hori-
zons, and not just the outermost one. The thermodynamic
properties, including the surface gravity and area at each
horizon, can therefore be expected to play a role in under-
standing the entropy at the microscopic level.

Some of these ideas have been explored for asymptoti-
cally flat, rotating, multicharged black holes in four and
five spacetime dimensions. [Explicit solutions were given
in [4,5], as generating solutions of maximally supersym-
metric N ¼ 4 (or N ¼ 8) supergravities, obtained as
toroidal compactifications of the heterotic string (or of
Type IIA string or M theory).] In addition to their mass
M, in four dimensions these solutions are specified by four
charges Qi (i ¼ 1; � � � ; 4) and one angular momentum J,

and in five dimensions by three chargesQi (i ¼ 1, 2, 3) and
two angular momenta J1;2. These black holes have just two
horizons, and the area of the outer horizon has the tantaliz-
ing form [4]

Sþ ¼ 2�ð ffiffiffiffiffiffiffi
NL

p þ ffiffiffiffiffiffiffi
NR

p Þ; (1)

where the integers NL and NR may be viewed as the
excitation numbers of the left and right moving modes of
a weakly-coupled two-dimensional conformal field theory.
NL and NR depend explicitly on all the black-hole parame-
ters. It was pointed out, first in the static case [6] and later
for the general rotating black holes [7,8], that the entropy
of the inner horizon, S� ¼ 1

4A�, is

S� ¼ 2�ð ffiffiffiffiffiffiffi
NL

p � ffiffiffiffiffiffiffi
NR

p Þ: (2)

From this and (1), it follows that the product of the
inner and outer horizon entropies satisfies SþS� ¼
4�2ðNL � NRÞ, which in terms of the underlying confor-
mal field theory would be interpreted in terms of a level-
matching condition. SþS� should therefore also be an
integer [6–8]. (This point was recently reemphasized
in [9].) It was found that SþS� is indeed quantized, and
intriguingly, it is expressed solely in terms of the quantized
charges and quantized angular momenta. In particular, it is
modulus independent, taking the forms

SþS� ¼ 4�2

�Y4
i¼1

Qi þ J2
�

(3)

SþS�¼4�2

�Y3
i¼1

QiþJ2R�J2L

�
¼4�2

�Y3
i¼1

QiþJaJb

�
(4)

in four and five dimensions, respectively. (These results
were implicit in [7,8], though not explicitly evaluated.)
The solutions considered here can be viewed as ‘‘seed
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solutions’’ from which the complete families can be gen-
erated. The expressions for SþS� would be expressed in
terms of S-, T-, and U-duality invariants built from the
charges in the general case.

In a parallel development, Ansorg and collaborators
[10–16] studied general axisymmetric stationary solutions
of Einstein-Maxwell theory in four dimensions, with
sources external to the horizons. They obtained striking
‘‘universal’’ formulas expressing the areas A� of the outer
and inner Killing horizons in terms of the total angular
momentum J and total charge Q. In particular, for Kerr-
Newman black holes, they found (in the normalization
conventions we use in the remainder of this Letter)

A2þ � AþA� ¼ ð8�JÞ2 þ ð4�Q2Þ2; (5)

in agreement (after conversion to our conventions) with the
result given above in the special case that the four charges
are set equal. Note the inequality (5) may be interpreted as
a general criterion for extremality, and has been used to
prove a No-Go theorem for the possibility of force balance
between two rotating black holes [17].

It is natural to enquire whether analogous properties
hold for more general classes of black holes, and espe-
cially, for those where the radial metric function has more
than two zeroes. Examples include charged or rotating
black holes in four or five-dimensional gauged supergrav-
ity, and in more than five dimensions with or without
gauging. The wave equations in these backgrounds will
have dominant contributions associated with poles at each
of these zeroes. One can therefore again expect that the
thermodynamics associated with each pole will play a role
in governing the properties of the black hole at the micro-
scopic level. At event horizons or Cauchy horizons, the
metric at fixed radius has signature (0;þ;þ; � � � ;þ); that
is, it describes a null hypersurface. However, it may happen
that the induced metric has signature (0;�;þ;þ; � � � ;þ);
in other words that the hypersurface is timelike, and the
area of this ‘‘pseudohorizon’’ [18] is pure imaginary. The
metric radial function may also have zeroes for complex
values of the radial variable, these occur in conjugate pairs.
In what follows, we shall just refer to zeroes of the radial
function as horizons, regardless of whether the areas are
real, imaginary or complex.

If it is indeed the case that geometries near all the
horizons are involved in governing the microscopic behav-
ior of the black hole, one might expect that the formulas (3)
and (4) should generalize, for the more general black-hole
examples, to expressions involving the products of all the
horizon entropies or areas. This would suggest the possi-
bility of an explanation for the microscopic behavior of
such black holes in terms of a field theory in more than two
dimensions.

We shall present results for the products of horizon areas
in examples that include certain rotating black-hole solu-
tions in gauged supergravities in dimensions 4, 5, 6, and 7,

and also Kerr–anti-de Sitter rotating black holes in arbi-
trary spacetime dimensions. For the sake of brevity, we
shall not present the details of our calculations in all cases,
and instead, we have selected one example, namely, the
rotating black hole in five-dimensional minimal gauged
supergravity, for which we present the calculation of the
area-product formula in more detail.
The formulas that we obtain for the area products are

universal, they depend only on quantized charges, quan-
tized angular momenta and the cosmological, or gauge-
coupling, constant. In the case that the latter is also
quantized (such as arises in compactifications of string
theory, as discussed, for example, in [19]), these results
are indeed suggestive of some underlying microscopics.
For example, one may speculate that asymptotically anti–
de Sitter black holes in four and five dimensions, for which
there are three horizons, may have a microscopic origin in
three-dimensional Chern-Simons theory.
We shall use normalization conventions where the

Lagrangian density for gravity and Maxwell field(s) is of
the form

L¼ 1

16�G

�
R�X

i

�ið�ÞFi
��F

i��þðD�1ÞðD�2Þg2
�
;

(6)

where the functions of scalar fields (if present) are such
that �ið�Þ tends to unity at infinity for the black-hole
solutions. We define charge(s) and angular momenta by

Qi ¼ 1

4�

Z
�ið�Þ � Fi; Ji ¼ 1

16�

Z
�dKi; (7)

where Ki ¼ Ki
�dx

� and Ki�@� ¼ @=@c i, where c
i is the

azimuthal coordinate, with period 2�, in the 2-plane asso-
ciated with the angular momentum Ji.
Our results for the products of the horizon areas for

rotating black holes in gauged supergravities in dimensions
4, 5, 6, and 7 are as follows:D ¼ 4 ungauged 4-charge [4]:

AþA� ¼ ð8�JÞ2 þ 256�2
Y4
i¼1

Qi;

D ¼ 4 gauged pairwise equal charges [20]:

Y4
�¼1

A� ¼ ð4�Þ2g�4ð8�JÞ2 þ 4g�4ð4�Q1Þ2ð4�Q2Þ2:

D ¼ 5 ungauged 3-charge [5]:

AþA� ¼ ð8�JaÞð8�JbÞ þ 256�
Y3
i¼1

Qi;

D ¼ 5 minimal gauged [21]:

Y2
�¼0

A� ¼ �2i�2g�3ð8�JaÞð8�JbÞ � ig�3

�
8�Qffiffiffi

3
p

�
3
;
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D ¼ 5 gauged Q1 ¼ Q2 � Q3 [22]:

Y3
�¼0

A� ¼ � 2i�2

g3
ð8�JaÞð8�JbÞ � i

g3
ð8�Q1Þ2ð8�Q3Þ:

D ¼ 6 gauged [23]:

Y6
�¼1

A� ¼ g�8

�
8�2

3

�
2ð8�JaÞ2ð8�JbÞ2 þ g�6

�
8�Q

3

�
6
:

D ¼ 7 gauged [24]:

Y4
�¼1

A� ¼ �3g�5
Y3
i¼1

ð8�JiÞ � g�4ð2�QÞ4:

Note that we have included the cases of the 4-charge
D ¼ 4, and the 3-charge D ¼ 5, solutions in ungauged
supergravities, which were already presented as entropy-
product formulas in the introduction. This is done for the
sake of uniformity, using the normalization conventions
that we follow in the rest of the body of the Letter. The
citation in each heading above refers to the paper where the
black-hole solution was constructed.

To illustrate how these calculations may be performed,
we shall present the example of the rotating black hole in
five-dimensional minimal gauged supergravity. The hori-
zons are located at the roots of the radial function

�ðrÞ¼ ð1þg2r2Þðr2þa2Þðr2þb2Þþq2þ2abq�2mr2

(8)

that appears in the metric found in [21]. This is a cubic
polynomial in r2, and so there are six roots in total, occur-
ring in pairs for which r2 takes the same value. We may
view x ¼ r2 as the radial variable, and thus just consider 3
roots. We may write � as

�ðrÞ ¼ g2
Y2
�¼0

ðr2 � r2�Þ: (9)

The horizon areas are

A� ¼ 2�2½ðr2� þ a2Þðr2� þ b2Þ þ abq�
�a�br�

: (10)

Using (8) and �ðr�Þ ¼ 0, we can write this as

A� ¼ � 2�2ð2mþ abqg2Þ
�a�bð1þ g2r2�Þr�

�
qðqþ abÞ

2mþ abqg2
� r2�

�
: (11)

Noting from (8) and (9) that we may write
Q

�ðc2 � r2�Þ as
g�2�ðcÞ, for any c, it is then straightforward to evaluate the
product of the A�. With the angular momenta and the
charge given in terms of the rotation parameters a and b,
the mass parameter m, and the charge parameter q by [21]

Ja ¼ �½2amþ qbð1þ g2a2Þ�
4�2

a�b

;

Jb ¼ �½2bmþ qað1þ g2b2Þ�
4�2

b�a

;

Q ¼
ffiffiffi
3

p
�q

4�a�b

;

(12)

where �a ¼ 1� a2g2 and �b ¼ 1� b2g2, a straightfor-
ward calculation then gives the result we listed above. The
calculations for the other examples can be performed in a
similar manner.
For the Kerr-AdS metrics in arbitrary dimensions

[25,26], it is necessary to separate the cases of even
dimensions, D ¼ 2N þ 2, and odd dimensions, D ¼
2N þ 1. In each case there are 2N þ 2 horizons and N
angular momenta Ji. When D ¼ 2N þ 1, the radial metric
function is a function of r2, and the product over all
horizons is equivalently expressible as the square of the
product over just N þ 1 horizons corresponding to a single
choice of square root for each r2�. Our results for the
horizon area products in D-dimensional Kerr-AdS are

D ¼ 2N þ 2:
Y2Nþ2

�¼1

A� ¼ g�4NðAD�2Þ2
YN
i¼1

ð8�JiÞ2;

D ¼ 2N þ 1:
YN
�¼0

A� ¼ g�2Nþ1cNAD�2

Y
i

ð8�JiÞ;

where cN ¼ ð�1ÞðNþ1Þ=2, and AD�2 ¼ 2�ðD�1Þ=2=
�½ðD� 1Þ=2� is the volume of the unit (D� 2) sphere.
The results presented above for black holes in gauged

supergravities, and for Kerr-AdS black holes in pure grav-
ity with a cosmological constant, admit straightforward
limits to the ungauged, or zero cosmological constant,
case. The radial functions in the metrics have a universal
feature, as can be seen in (8) for the example of five-
dimensional gauged supergravity, that the degree of the
polynomial in r is reduced by 2 when the gauge-coupling g
is set to zero. In this limit, the locations of these two ‘‘lost
horizons’’ approach r ¼ �ig�1, and the areas of the lost
horizons in the cases of even and odd dimensional black
holes are

D ¼ 2N þ 2: Alost ¼ ð�1ÞNg�2NAD�2;

D ¼ 2N þ 1: Alost ¼ �ið�1ÞNg�2Nþ1AD�2:
(13)

If these areas are factored out from our previous expres-
sions for the horizon area products, and then g is sent to
zero, we can obtain the analogous formulas for the corre-
sponding ungauged supergravities, and for asymptotically
flat rotatating black holes in arbitrary dimensions. For the
black holes in four and five-dimensional supergravities, the
limits yield expressions encompassed by those given above
for the ungauged cases. For the black holes in gauged six
and seven dimensional supergravities, it is interesting to
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note that the electric charge terms scale to zero in the
ungauged limit. The resulting expressions are then just
the D ¼ 6 and D ¼ 7 specializations of the limiting forms
for asymptotically-flat black holes in arbitrary dimensions,
which we find to be

D ¼ 2N þ 2:
Y2N
�¼1

A� ¼ YN
i¼1

ð8�JiÞ2;

D ¼ 2N þ 1:
YN
�¼1

A� ¼ Y
i

ð8�JiÞ:
(14)

We have also worked out the area-product formulas for a
general class of charged rotating black holes in D> 5
ungauged supergravities [27], and we find the same phe-
nomenon as in the D ¼ 6 and D ¼ 7 ungauged limits
described above. Namely, the area products are indepen-
dent of the charges in D> 5, and are given simply by the
expressions (14) for uncharged asymptotically flat rotating
black holes.

In this Letter, we have obtained formulas for the prod-
ucts of the horizon areas in a wide variety of black-hole
solutions, showing that they are independent of moduli and
are expressed solely in terms of quantized charges, angular
momenta and the gauge-coupling constant. These provide
tantalizing hints of a possible explanation for the micro-
scopic properties of the black holes in terms of field
theories in more than two dimensions.

The results in [10–16], where it was shown for certain
four-dimensional cases that the universality of the product
formulas persisted in the presence of external fields, sug-
gest that our expressions in more general dimensions may
also be robust in the presence of external fields. This is the
analogue for black holes of the central idea of Old
Quantum Theory, associated with the names of Bohr,
Wilson, and Sommerfeld, that it is adiabatic invariants
that should take quantized values because classically their
values do not change under slow perturbations. It may be
relatively straightforward to study the effect of external
fields in four and five dimensions, since the symmetries
allow a reduction to a system of equations on a two-
dimensional quotient space. We hope to return to this
subject in the future.

We believe that the quantized area-product formulas that
we have obtained in this Letter provide a strong indication
that there is a universal near-horizon structure for general
black holes. This suggests the possibility that the micro-
scopic degrees of freedom may admit a dual field-theoretic
interpretation that generalizes the two-dimensional confor-
mal field theory duals to certain four- and five-dimensional
black holes, where the inner and out horizon areas
are expressed in terms of the left and right conformal
weights of the field-theory excitations. Further studies of

black-hole dynamics, such as black-hole scattering pro-
cesses, should provide further insights into this possibility.
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Lett. 95, 161301 (2005).
[22] J. Mei and C.N. Pope, Phys. Lett. B 658, 64 (2007).
[23] D. D.K. Chow, Classical Quantum Gravity 27, 065004

(2010).
[24] D. D.K. Chow, Classical Quantum Gravity 25, 175010

(2008).
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