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We present a conformal gravity fit to the 20 largest of a sample of 110 spiral galaxies. We identify the

presence of a universal quadratic potential V�ðrÞ ¼ ��c2r2=2 with � ¼ 9:54� 10�54cm�2 induced by

cosmic inhomogeneities. When V�ðrÞ is taken in conjunction with both a universal linear potential

V�0
ðrÞ ¼ �0c

2r=2 with �0 ¼ 3:06� 10�30cm�1 generated by the homogeneous cosmic background

and the contribution generated by the local luminous matter in galaxies, the theory then accounts for

the rotation curve systematics observed in the entire 110 galaxies, without the need for any dark matter

whatsoever. Our study suggests that using dark matter may be nothing more than an attempt to describe

global effects in purely local galactic terms. With V�ðrÞ being negative, galaxies can only support bound

orbits up to distances of order �0=� ¼ 100kpc, with global physics imposing a limit on the size of galaxies.
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I. Introduction.—At the present time it is widely be-
lieved that on scales much larger than solar-system-sized
ones astrophysical and cosmological phenomena are con-
trolled by dark matter and dark energy, with luminous
matter being only a minor contributor. However, given
the lack to date of either direct detection of dark matter
particles or of a solution to the cosmological constant
problem, a few authors (see, e.g., [1] for a recent review)
have ventured to suggest that the standard dark matter and
dark energy picture may be incorrect, and that one instead
needs to modify the standard Newton-Einstein gravita-
tional theory that leads to that picture in the first place.
In this Letter we study one specific alternative to Einstein
gravity that has been advanced, namely, conformal gravity.
We report here on the results of a conformal gravity study
of the instructive 20 largest of a full sample of 110 gal-
axies, all of whose rotation curves we have been able to fit
without the need for any dark matter whatsoever.

In seeking an alternative to Einstein gravity that is to
address both the dark matter and dark energy problems, our
strategy is to seek some alternate, equally metric-based
theory of gravity that possesses all of the general coordinate
invariance and equivalence principle structure of Einstein
gravity, that yields a geometry that is described by the Ricci-
flat Schwarzschild metric on solar-system-sized distance
scales while departing from it on larger scales where the
dark matter problem is first encountered, and that has a
symmetry that can control the cosmological constant �.
All of these criteria are met in the conformal gravity theory
(see, e.g., [1]) that was first developed byWeyl. Specifically,
as well as coordinate invariance, in addition one requires
that the action be left invariant under local conformal

transformations of the form g��ðxÞ ! e2�ðxÞg��ðxÞ with

arbitrary local phase �ðxÞ. Given this requirement, the
gravitational action is then uniquely prescribed to be of

the form IW ¼�2�g

R
d4xð�gÞ1=2½R��R

���ð1=3Þ�
ðR�

�Þ2� where �g is a dimensionless gravitational coupling

constant. With the conformal symmetry forbidding the pres-
ence of any fundamental � term in IW , conformal gravity
has a control on � that is not possessed by Einstein gravity,
and through this control conformal gravity is then able to
solve the cosmological constant problem [2]. In addition, the
conformal gravity equations of motion are given by [1]

4�gW
�� ¼ T�� (1)

where W�� is a derivative function of R��. With W��

vanishing when R�� vanishes [1], Schwarzschild is thus a
vacuum solution to conformal gravity, just as required [3].
II. Universal potentials from the rest of the Universe.—

Since W�� is a derivative function of R��, it could poten-
tially vanish even if the geometry is not Ricci flat, and the
conformal theory could thus have non-Schwarzschild vac-
uum solutions as well. To identify such solutions,
Mannheim and Kazanas solved for the metric associated
with a static, spherically symmetric source, to find [4] that
due to the underlying conformal symmetry one could
bring the exact, all-order line element to the form ds2 ¼
�BðrÞdt2 þ dr2=BðrÞ þ r2d�2. And with 3ðW0

0 �Wr
rÞ=

BðrÞ then evaluating to r4BðrÞ, the metric coefficient BðrÞ
is found to obey the remarkably simple and exact fourth-
order derivative equation

r4BðrÞ ¼ fðrÞ (2)

where fðrÞ ¼ 3ðT0
0 � Tr

rÞ=4�gBðrÞ. For a local source of
radius r0 embedded in an empty vacuum (2) possesses an
exterior solution of the form

Bðr > r0Þ ¼ 1� 2�=rþ �r: (3)

Through the �r term the conformal gravity metric thus
departs from the exterior Schwarzschild metric at large r
alone, just as we want.
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In conformal gravity a local gravitational source gener-
ates a gravitational potential

V�ðrÞ ¼ ���c2=rþ ��c2r=2 (4)

per unit solar mass, with �� being given by the familiar
M�G=c2 ¼ 1:48� 105 cm, and with the numerical value
of the solar �� needing to be determined by data fitting. In
the theory the visible local material in a given galaxy
would generate a net local gravitational potential VLOCðrÞ
given by integrating V�ðrÞ over the visible galactic mass
distribution. In disk galaxies luminous matter is typically

distributed with a surface brightness �ðRÞ ¼ �0e
�R=R0

with scale length R0 and total luminosity L ¼ 2��0R
2
0,

with most of the surface brightness being contained in the
R � 4R0 or so optical disk region. For a galactic mass to
light ratio M=L, one can define the total number of solar
mass units N� in the galaxy via ðM=LÞL ¼ M ¼ N�M�.
Then, on integrating V�ðrÞ over this visible matter distri-
bution, one obtains [1] the net local luminous contribution

v2
LOC ¼ N���c2R2½I0ðxÞK0ðxÞ � I1ðxÞK1ðxÞ�=2R3

0

þ N���c2R2I1ðxÞK1ðxÞ=2R0 (5)

(where x ¼ R=2R0) for the velocities of particles orbiting
in the plane of the galactic disk.

However, unlike the situation that obtains in standard
second-order gravity, one cannot simply use (5) as is to fit
galactic rotation curves, as there are two additional global
effects coming from the rest of the material in the Universe
that need to be taken into consideration as well. To under-
stand why this is so, we recall that for the standard second-
order Poisson equation r2�ðrÞ ¼ gðrÞ, the force
associated with a general static, spherically symmetric
source gðrÞ is given by

d�ðrÞ
dr

¼ 1

r2

Z r

0
dr0r02gðr0Þ: (6)

As such, the import of (6) is that even though gðrÞ could
continue globally all the way to infinity, the force at any
radial point r is determined only by the material in the local
0< r0 < r region. In this sense Newtonian gravity is local,
since to explain a gravitational effect in some local region
one only needs to consider the material in that region. Thus
in Newtonian gravity, if one wishes to explain the behavior
of galactic rotation curves through the use of dark matter,
one must locate the dark matter where the problem is and
not elsewhere, i.e., within the galaxies themselves.

However, this local character to Newtonian gravity is not
a generic property of any gravitational potential. In par-
ticular for the fourth-order Poisson equation r4�ðrÞ ¼
hðrÞ ¼ fðrÞc2=2 of interest to conformal gravity, the
potential evaluates to

�ðrÞ ¼ � r

2

Z r

0
dr0r02hðr0Þ � 1

6r

Z r

0
dr0r04hðr0Þ

� 1

2

Z 1

r
dr0r03hðr0Þ � r2

6

Z 1

r
dr0r0hðr0Þ; (7)

so that this time we do find a global contribution to the
force coming from material that is beyond the radial point
of interest. Hence in conformal gravity one cannot ignore
the rest of the Universe, with a test particle in orbit in a
galaxy being able to sample both the local field due to the
matter in the galaxy [viz. (5)] and the global field due to the
rest of the Universe. This global field consists of two
components, a cosmological background in which W��

and r4BðrÞ both vanish and the inhomogeneities in it
that cause W�� and r4BðrÞ to be nonzero, with inhomo-
geneities in the Universe thus leading to integrals in (7) that
can extend to very large distances.
As regards the background, we note that we can add on to

(7) any terms that would cause W�� to vanish, though such
terms would only have content if they make W�� vanish
nontrivially. Since the cosmological Robertson-Walker (RW)
metric is homogeneous and isotropic, it is conformal to flat,
and thus its geometry obeysW�� ¼ 0. For the cosmological
background the vanishing of W�� entails that conformal
cosmology be described by T�� ¼ 0. As discussed in [1]
the equation T�� ¼ 0 can be satisfied nontrivially, and leads
to a topologically open (K < 0) RW cosmology, with its
contribution to W�� then vanishing nontrivially, just as
desired.
To ascertain the impact of the cosmological background

on rotation curves, we note that since cosmology is written
in comoving Hubble flow coordinates while rotation curves
are measured in galactic rest frames, one needs to trans-
form the RW metric to static coordinates. As noted in [4],
the transformation

	¼4r=½2ð1þ�0rÞ1=2þ2þ�0r�; 
¼
Z
dtRðtÞ (8)

effects the metric transformation

� ð1þ �0rÞc2dt2 þ dr2

ð1þ �0rÞ þ r2d�2

¼ e2�ðxÞ
�
�c2d
2 þ R2ð
Þ

½1� �2
0	

2=16�2 ðd	
2 þ 	2d�2Þ

�
;

(9)

where e�ðxÞ ¼ ð1þ �0	=4Þ=ð1� �0	=4ÞRð
Þ. Since an
RW geometry is conformal to flat and since it remains so
under a conformal transformation, we thus see that in the
rest frame of a comoving galaxy (i.e. one with no peculiar
velocity with respect to the Hubble flow), a topologically
open RW cosmology would look just like none other than a
universal linear potential with cosmological strength

�0=2 ¼ ð�KÞ1=2.
In the conformal theory then we recognize not one but

two linear potential terms, a local N��� dependent one
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associated with the matter within a galaxy and a global
cosmological one �0c

2r=2 associated with cosmological
background. Thus in the weak gravity limit one can add the
two potentials and replace (5) by [5]

v2
TOT ¼ v2

LOC þ �0c
2R=2: (10)

In [5] (10) was used to fit the galactic rotation curve data of a
sample of 11 galaxies (of which only NGC 2841 and NGC
3198 are in the sample considered here), and good fits were
found, with the two universal linear potential parameters
being fixed to the values �� ¼ 5:42� 10�41 cm�1, �0 ¼
3:06� 10�30 cm�1. The value obtained for �� entails that
the linear potential of the Sun is so small that there are no
modifications to standard solar system phenomenology, with
the values obtained for N��� and �0 being such that one has
to go to galactic scales before their effects can become as big
as the Newtonian contribution. The value obtained for �0

shows that it is indeed of cosmological magnitude. In the
fitting to the 110 galaxy sample these values do not change.

As regards the inhomogeneities in the cosmic back-
ground, we note that they would typically be in the form
of clusters and superclusters and would be associated with
distance scales between 1Mpc and 100Mpc or so. Without
knowing anything other than that about them, we see from
(7) that for calculating their effect on galactic distance
scales (viz. scales much smaller than cluster scales them-
selves) the inhomogeneities would contribute constant and
quadratic terms multiplied by integrals that are evaluated
between end points that do not depend on the galaxy of
interest, to thus be constants [6]. Thus, again up to peculiar
velocity effects, we augment (10) to

v2
TOT ¼ v2

LOC þ �0c
2R=2� �c2R2; (11)

with asymptotic limit

v2
TOT ! N���c2=Rþ N���c2R=2þ �0c

2R=2� �c2R2:

(12)

It is thus (11) with its universal � that we must use for
fitting galactic rotation curves, and in making such fits the
only parameter that can vary from one galaxy to the next is
the galactic disk mass to light ratio as embodied in N�. Our
fits are thus highly constrained, one parameter per galaxy,
fits (the fits also include the effect of HI gas, but for the gas
the mass is known), with everything else being universal,
and no dark matter being assumed.

III. Data fitting.—We recall that in [5] successful rotation
curve fitting to an 11 galaxy sample was obtained using (10),
and one would thus initially anticipate that even if the
��c2R2 term were to be present in principle, in practice it
would be too small to have any effect. However, the sample
we have studied now is altogether larger (110 galaxies) and it
contains some very instructive galaxies whose data points
extend to larger distances from galactic centers than had
been the case for the earlier 11 galaxy sample. It is through
fitting these highly extended galaxies that we are able to
uncover a role for the��c2R2 term and extract a value for �

given by � ¼ 9:54� 10�54 cm�2 [7]. And in the fitting to
the full 110 galaxy sample to be reported elsewhere [8]
(a varied sample of galaxies that includes high (HSB) and
low (LSB) surface brightness galaxies and dwarfs) we are
able to confirm that even with this now fixed value for �,
(11) fully accounts for the data. With � being found to be of
order 1=ð100 MpcÞ2, it is indeed an inhomogeneous rather
than a Hubble distance scale.
In Fig. 1 we present our fits to the 20 galaxy sample with

all the relevant parameters being given in [8]. In Fig. 1 the
rotational velocities and errors (in km sec�1) are plotted as a
function of radial distance (in kpc). For each galaxy we
exhibit the contributions due to the luminous Newtonian
term alone (dashed curve), the two linear terms alone
(dash-dotted curve), the two linear terms and the quadratic
terms combined (dotted curve), with the full curve showing
the total contribution. As we see, without any need for dark
matter, our fitting captures the essence of the data. Because
the data go out to much further distances than had been
the case for the sample studied in [5], the data are now
sensitive to the rise in velocity associated with the linear
potential terms, and it is here that the quadratic term acts to
actually arrest the rise altogether (dotted curve) and cause all
rotation velocities to ultimately fall. Moreover, since v2 can-
not be negative, beyond a distance R� ðN��� þ �0Þ=2�,
which would typically be of order 100 kpc or so, there could

FIG. 1 (color online). Fitting to the rotational velocities of the
large galaxy sample.
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no longer be any bound orbits, with galaxies thus having a
natural way of terminating, and with global physics thus
imposing a natural limit on the size of galaxies. To illustrate
this we plot the rotation curve for UGC 128 over an extended
range [9]. The fits presented here and in [8] are noteworthy
since the universal �0 and � terms have no dependence on
individual galactic properties whatsoever and yet have to
work in every single case.

It is important to appreciate that the fits provided by
conformal gravity (and likewise by other alternate theories
such as the MOND and MSTG [10] theories) are predic-
tions. Specifically, for all these theories the only input one
needs is the optical data, and the only free parameter is the
M=L ratio for each given galaxy, with rotation velocities
then being determined [11]. It is important to emphasize
that the fits are predictions since dark matter fitting to
galactic data works very differently. There one first needs
to know the velocities so that one can then ascertain the
needed amount of dark matter; i.e., in its current formula-
tion dark matter is only a parametrization or postdiction of
the velocity discrepancies that are observed and is not a
prediction of them. Dark matter theory has yet to develop
to the point where one is able to predict rotation velocities
given a knowledge of the luminous distribution alone. Thus
dark matter theories, and, in particular, those theories that
produce dark matter halos in the early Universe, are cur-
rently unable to make an a priori determination as to which
halo is to go with which particular luminous matter distri-
bution, and need to fine-tune halo parameters to luminous
parameters galaxy by galaxy. No such shortcoming appears
in conformal gravity, and if standard gravity is to be the
correct description of gravity, then a universal formula akin
to the one given in (11) would need to be derived by dark
matter theory. However, since our study establishes that
global physics does indeed influence local galactic mo-
tions, the invoking of dark matter in galaxies could poten-
tially be nothing more than an attempt to describe global
effects in purely local galactic terms.

We would like to thank Dr. J. R. Brownstein,
Dr. W. J. G. de Blok, Dr. J.W. Moffat, and Dr. S. S.
McGaugh for helpful communications, and especially for
providing their galactic data bases. We are particularly
indebted to Dr. McGaugh for having alerted us to the fact
that a linear potential would lead to an overshoot in
UGC 128.

Note added.—We are indebted to a referee who kindly
informed us that the galaxy Malin 1 goes out even further
(to a mammoth 98.0 kpc) than any of the galaxies in our
sample. As such it provides an immediate test of our
ideas. Malin 1 has been studied by Pickering et al. and
by Lelli et al. [12]. For our fit we use the first four points
of Lelli et al. and the fifth point of Pickering et al.
(as then adjusted to the 38� inclination given in
Lelli et al.). For Malin 1 DL ¼ 338:4 Mpc, DA¼DL=ð1þ

zÞ2¼288:9Mpc, LB ¼ 7:9� 1010LB�, MHI ¼ 5:4�
1010M�, and ðv2=c2RÞlast ¼ 1:77� 10�30 cm�1, just as
we want [11]. The galaxy has a disk with R0ðdiskÞ ¼
84:2 kpc and a bulge, and with R0ðgasÞ ¼ 4R0ðdiskÞ we
obtain the fit shown in Fig. 1, withMdisk ¼ 1:0� 1010M�,
Mbulge ¼ 9:5� 1010M�, R0ðbulgeÞ ¼ 1:0 kpc, ðMdisk þ
MbulgeÞ=LB ¼ 1:32M�=LB�. As we see, the fit is quite

acceptable, with the required ultimate fall in velocity be-
ginning to set in shortly beyond the last data point.
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