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We demonstrate that collective continuous variables of two species of trapped ultracold bosonic gases

can be Einstein-Podolsky-Rosen-correlated (entangled) via inherent interactions between the species. We

propose two different schemes for creating these correlations—a dynamical scheme and a static scheme

analogous to two-mode squeezing in quantum optics. We quantify the correlations by using known

measures of entanglement and study the effect of finite temperature on these quantum correlations.
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Einstein, Podolsky, and Rosen (EPR) pointed out [1] that
correlations induced between quantum objects will persist
after these objects have ceased to interact. Consequently,
their joint continuous variables (CV), e.g., the difference of
their positions and the sum of their momenta, may be
specified, regardless of their distance, with arbitrary preci-
sion. EPR correlations have since been studied extensively
and were shown to give rise to [2–6] inseparability
(entanglement) of their quantum states.

In studying continuous variable entanglement, it is in-
structive to draw an analogy with the original EPR scenario
[1], wherein two particles, 1 and 2, are defined through their
position and momentum variables x1;2 and p1;2, respec-

tively. EPR saw as a paradox that the observables of parti-
cle 2 (x2 andp2) are determined by themeasurement choice
on particle 1. Thus, the product of the variance of x2
following a measurement of x1, and of the variance of p2

following a measurement of p1, appears to be unbound by
the Heisenberg relation �x2�p2 � 1=2 (choosing @ ¼ 1).
The EPR state is deemed entangled in the continuous trans-
lational variables of the two particles. In quantum optics
these variables are associated with the sum and difference
of field quadratures of two light modes mixed by a sym-
metric beam splitter [6,7] [Fig. 1(a)]. EPR entanglement is
a fundamental resource for quantum information [6,8,9]
and for CV teleportation of light [10,11] and matter waves
[12,13]. Lately, such entanglement has been demonstrated
for collective CVof distant thermal-gas clouds, correlated
by interaction with a common field [14,15].

Here we show that collective CV of two species of
trapped ultracold bosonic gases can be EPR-correlated
(entangled) via inherent interactions between the species.
This paves the way to further quantum information and
precision metrology applications of such systems and to
analogous approaches in other related fields, such as
quantum optics and superconducting Josephson junctions
(JJs) [16,17]. Note the related recent work on other scenar-
ios of EPR entanglement generation [18].

EPR criteria.—In order to qualify the EPR correlations,
one may adopt two distinct criteria. The first criterion
imposes an upper bound on the product of the variances
of EPR-correlated commuting dimensionless operators,
x̂þ and p̂� or x̂� and p̂þ [8,12]:

FIG. 1 (color online). (a) State-preparation scheme (see the
text). (b) Dynamics of the entanglement defined by the two-
mode squeezing criterion for both sudden and slow intermode
coupling barrier ramping up, found through exact simulation of
Eq. (1) in Ref. [25] [unless stated otherwise, the simulations
are for N1 ¼ N2 ¼ 20, J ¼ 1 kHz, and ðEcÞAA ¼ ðEcÞBB ¼
ðEcÞAB ¼ 1 Hz]. The plot includes the case of a coupled system
(Ec12 ¼ Ec, solid blue line), an uncoupled system (Ec12 ¼ 0,
dashed green line), slow ramp-up (dash-dotted black line), and
the classical limit (dotted red line). The trade-off between entan-
glement and nonlinear phase diffusion is better for the sudden
coupling. (c) The same as (b) (except for slow barrier ramp-up) for
the negativity entanglement measure (see the text). (d)Maximally
achievable negativity (solid blue line) reached through the
dynamics as a function of charging energy Ec, assuming all
coefficients are equal: ðEcÞAA ¼ ðEcÞBB ¼ ðEcÞAB � Ec [32,33].
The separability limit is indicated by the red dashed line.
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h�x̂2�ih�p̂2�i �
1

4s
� 1

4
: (1)

Only one of the inequalities (upper or lower sign) can be
simultaneously satisfied (otherwise, the uncertainty princi-
ple is violated). The EPR correlation is then measured by
the two-mode squeezing factor 1< s <1. The second
criterion is the inseparability (entanglement) for Gaussian
states [9,15], related to the sum of the variances of the
correlated observables � � h�x̂2�i þ h�p̂2�i � 1< 0.

The criteria described above are commonly used and are
experimentally accessible [15,19]. However, they are not
well-posed entanglement measures. We thus employ a third
entanglement criterion, the positivity of the partial trans-
pose [20,21], which has been adapted for bipartite Gaussian
CV [22–24]. The negativity measure, derived from positiv-
ity of the partial transpose, consists of transposing the
density matrix with respect to one subsystem and summing
the negative eigenvalues of the resulting matrix.

Scheme for ‘‘global’’ EPR correlations in bosonic JJs.—
We first consider the correlation of the two species (two
internal states of the atom), in the presence of tunnel
coupling between the left (L) and right (R) wells. We
assume that there is no population exchange between the
internal states jAi and jBi, and therefore the numbers of
atoms NA and NB in these states are constants of motion.
The Hamiltonian [25] can then be written in this basis in
terms of the left-right atom-number differences in the

two internal states, n̂A ¼ ðâyLâL � âyRâRÞ=2 and n̂B ¼
ðb̂yLb̂L � b̂yRb̂RÞ=2, and their canonically conjugate phase

operators �̂A;B, obeying the commutation relations

½�̂�; n̂�0 � ¼ i���0 (�;�0 ¼ A; B). For simplicity we as-
sume from now on that NA ¼ NB � N and consider small
interwell number differences such that hn̂A;Bi � N. The

Hamiltonian [26] then becomes

H ¼ ðEcÞAAn̂2A þ ðEcÞBBn̂2B þ 2ðEcÞABn̂An̂B
� JNðcos�̂A þ cos�̂BÞ
þ 2J

N
ðn̂2A cos�̂A þ n̂2B cos�̂BÞ: (2)

Here the nonlinearity coefficients (‘‘charging’’ energies)
ðEcÞAA, ðEcÞBB, and ðEcÞAB are determined, respectively, by
the intra- and interspecies s-wave scattering lengths. The
tunneling energy J is the same for atoms in the internal
states jAi and jBi.

Equation (2) displays the full dynamics used in our
numerics (Fig. 1), that of two quantum nonlinear pendula
coupled via 2ðEcÞABn̂An̂B. This coupling between the pen-
dula associated with different species is the key to their
global correlations (extending over both wells).

We may, for didactic purposes, simplify (2) by expand-
ing the cosine terms. In the lowest-order approximation

cos�̂A;B ’ 1� �̂2
A;B=2, the system is described by two

coupled harmonic oscillators. This suggests that the system
under study can indeed satisfy the entanglement or
two-mode squeezing criteria, if the relevant collective

variables in our system are mapped onto those of two field
modes mixed by a symmetric beam splitter

n̂� ¼ 1
ffiffiffi
2

p ðn̂A � n̂BÞ $ x̂�;

�̂� ¼ 1
ffiffiffi
2

p ð�̂A � �̂BÞ $ p̂�:
(3)

Using the collective variables defined in (3), we can
rewrite Eq. (2) in the harmonic approximation, assuming
ðEcÞAA ’ ðEcÞBB ¼ Ec, as

Ĥ ¼
�
Ec þ ðEcÞAB þ 2J

N

�
n̂2þ þ JN

2
�̂2

þ

þ
�
Ec � ðEcÞAB þ 2J

N

�
n̂2� þ JN

2
�̂2

�: (4)

Hence, the transformed Hamiltonian describes two un-
coupled harmonic modes in the collective basis. The
‘‘þ’’ mode corresponds to Josephson oscillations of the
total atomic population (regardless of the internal state)
between the two wells, such that the interspecies ratio in
each well is constant (in-phase oscillations of the A and B
species). The ‘‘�’’ mode corresponds to oscillations of the
interspecies ratio between the two wells, such that the total
population imbalance does not change (out-of-phase oscil-
lations of the A and B species). These two modes have
different fundamental frequencies !� (see [25]).
We now study the EPR correlation criteria using the

uncoupled�mode basis. For ðEcÞAB > 0 [Eqs. (1), (3), and
(4)] the EPR criteria may be satisfied. The two-mode
squeezing factor is s ¼ f½2J=N þ Ec þ ðEcÞAB�g=
f½2J=N þ Ec � ðEcÞAB�g. We then obtain s � 1 for Ec ’
ðEcÞAB � 2J=N and for the ground states of both modes,
approaching the ideal EPR limit s ! 1 of full CV entan-
glement. Beyond the lowest-order approximation that has
led to (4), there is parametric coupling of the collective
modes that may induce nontrivial dynamics of CV wave
packets conforming to the Born-Oppenheimer coupling
regime (see [25]).
For exact calculation of the dynamics we must resort to

the angular momentum operators that describe the two-
pendula system [25]. The resulting entanglement criteria
differ from those used for the number-phase operators only
for significant nonlinear phase diffusion, which affects the
state preparation that would yield the largest EPR correla-
tions (see [25]).
In Fig. 1(d), we plot the maximally achievable negativity

(from the positivity of the partial transpose criterion)
as a function of the charging energy. We find that the
entanglement grows with increasing charging energy and
asymptotically reaches a maximal value for NEc 	 J. We
note, however, that as interactions become stronger, they
cause significant nonlinear phase dispersion and therefore
reduce the measurable EPR correlations.
The optimal sudden sequence for state preparation con-

sists of [Fig. 1(a)] (a) filling the ground state of the original
trap (single well) by a Bose-Einstein condensate (BEC) in
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internal state jAi, (b) fast ramping up of the interwell poten-
tial barrier, thus creating a two-well symmetric superposition
(in the two-mode approximation—see [25] for calculation of
excitations created in this process), and (c) transforming state
jAi into a symmetric superposition of jAi and jBi by a fast
�=2 pulse. This sequence (which basically consists of �=2
transformations in both external and internal degrees of
freedom) yields an initial coherent state in the two original
modes. TheEPRentanglement of thesemodes then builds up
with time according to their coupled-pendula dynamics
[Eq. (2)]. By contrast, slower ramping up of the barrier
causes them to be exposed to both nonlinear phase diffusion
and environment-induced dephasing (see below) much lon-
ger, thus potentially spoiling the experimentally measurable
entanglement criteria [Fig. 1(b)].

Experimentally, this entanglement can be measured
through the variances of the collective number and phase
variables of Eq. (3), from which the squeezing and the
separability can be calculated. Measuring these variables
amounts to counting the atoms in each well and in each
internal state (via state-dependent absorption imaging) and
measuring the phase of each species through time-of-flight
interference (see [19] for details).

In Fig. 1(c), we plot the negativity as a function of time
for the above sequence. The observed dynamics is seen to
be inseparable and follows qualitatively the dynamics of
the two other criteria [Fig. 1(b)].

We note that it is not advantageous in this scheme to
redistribute the conjugate variances of the initial state by
creating a single-mode squeezed state in each well.
Intuitively, this is due to the fact that such squeezing
does not translate into correlations between the wells
and, thus, does not induce reduced variances of the two-
mode observables (for details, see [25]).

Scheme for local-mode correlations in bosonic JJs.—
We now present an approach based on correlations of two
squeezed local (left- and right-well) modes [Fig. 2(a)]. The
system is initialized in the left well (L) of a double-well
potential, in a single internal state (A). Then, the barrier is
suddenly dropped in order to create a coherent superposi-
tion of the ground vibrational state jgi and first-excited
state jei of the new (single-well) potential (see [25] for the
validity of the two-mode approximation). Next, a �=2
pulse creates a coherent superposition of the internal states
A and B of the atoms.

To lowest order the cross coupling between jgi and jei is
neglected, and therefore the number of particles in each
vibrational state is conserved. This conservation allows us
to rewrite the Hamiltonian in terms of the internal-state
number difference operator in each vibrational state, n̂g ¼
ðn̂gÞA � ðn̂gÞB and n̂e ¼ ðn̂eÞA � ðn̂eÞB. The Hamiltonian

then becomes (see [25])

Ĥ ¼ ½ðEcÞAA þ ðEcÞBB � 2ðEcÞAB�ðn̂2g þ n̂2eÞ: (5)

Thus, the system evolves separately in jgi and jei, each
undergoing dynamical single-mode squeezing in the

internal-state basis [27,28]. Such internal-state squeezing
was demonstrated recently [19].
Having accumulated maximal internal-state squeezing,

we raise the barrier quickly to create two separate sym-
metric wells, denoted L (left) and R (right). This sudden
projection creates a beam splitter (BS)-like transformation

to the basis jLi ¼ ð1= ffiffiffi
2

p Þðjgi þ jeiÞ, jRi ¼ ð1= ffiffiffi
2

p Þðjgi �
jeiÞ. Local measurements may now be done in the internal-
state basis in each well separately, resulting in nonclassical
correlations between observables pertaining to the spa-
tially separated wells.
The actual ensemble measurements consist of counting

the number of atoms in each species in each well in every
experimental realization, either directly or following a
rotation of the internal states by using microwave pulses
(to map the phase variables into number variables). These
techniques are described in detail in Ref. [29].
The scheme presented above is analogous to the quan-

tum optics scheme [6], in which two independent single-
mode squeezed states are injected into the input ports of a
BS, thereby creating pairs of entangled modes at the output
ports of the BS. However, the intrinsic nonlinearity of
jgi and jei in the BEC causes unwarranted mixing of these
single-mode analogs even before the BS-like transforma-
tion, causing fidelity loss (see [25]). The best fidelity is
achieved by modifying the barrier fast compared to the
change of the plasma frequency (nonadiabatic) but slow
compared to the local intrawell trapping frequencies.
In this sequence we can immediately use the maximal

internal-state squeezing factor s of a single ‘‘mode’’ [6], to
calculate the BEC analog of optical two-mode squeezed
variances

FIG. 2 (color online). (a) Schematic sequence for the creation
of ‘‘nonlocal’’ two-mode entanglement in analogy with the BS
approach. (b) Single-mode squeezing dynamics as a function of
time, for N ¼ 100. Decoherence effects: the variance of nþ (c)
and of �� (d) as a function of time, in the presence of proper
dephasing. We subtract the variance of the Hermitian dynamics
to single out the effect of dephasing. The coherence time is
estimated to be 
100 ms at 20 nK.
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h�n̂2þi ¼ h�ðn̂L þ n̂RÞ2i ¼ h�ðnð0Þþ Þ2i=s;
h��̂2

�i ¼ h�ð�̂L � �̂RÞ2i ¼ h�ð�ð0Þ� Þ2i=s;
(6)

namely, here the two-mode squeezing parameter is equal to
that of single-mode squeezing. This squeezing parameter
now characterizes the knowledge obtained about variables
in one well having measured their counterparts in the other
well [Fig. 2(b)].

Decoherence effects.—We now turn to the effect of
environment-induced decoherence on the robustness of
EPR entanglement in this system. We assume proper de-
phasing created by independently fluctuating (stochastic)
energy shifts of atoms in each internal state andwell, caused
by the thermal atomic or electromagnetic environment.
Because of the spectroscopic similarity of the two BEC
species, we reduce the number of independent stochastic
energy shifts �AðBÞLðRÞ by setting �AL=�BL ¼ �AR=�BR ¼
ð1� �Þ=ð1þ �Þ and assuming a ’’symmetrized environ-
ment,’’ i.e., � � 1. In order to calculate the effect of these
fluctuations on the variance of the number-phase operators,
we proceed with a linear expansion around the Josephson
regime solution and use theWiener-Khinchin theorem to get

h�n̂2þi ¼ h�n̂2þijt¼0 þ h�2þigr�T ð!þÞt;
h��̂2

�i ¼ h��̂2
�ijt¼0 þ 4N�1�2T ð!�Þt:

(7)

Here � ¼ ½1� �ðNA � NBÞ=N2�2 and T ð!Þ ¼R
d!0Scð!0Þ sin½ð!�!0Þt�=ð!�!0Þ, Scð!Þ being the

power spectrum of the fluctuating energy imbalance.

Because of the small value of �, the variance of �̂� almost
does not change (in either the global or local scheme), while
the variance of n̂þ increases linearly and is responsible for
the growing loss of entanglement (see [25]). Hence, wemay
manipulate the system as we see fit within the coherence
time [see Figs. 2(c) and 2(d)].

Discussion.—We have addressed EPR effects in an
ultracold-atom analog of two coupled JJs: a two-species
BEC, each species corresponding to a different sublevel of
the atomic internal ground state [30], trapped in a tunnel-
coupled double-well potential [Fig. 1(a)]. We have shown
that such bosonic coupled JJs can induce EPR entangle-
ment of appropriate combinations of collective variables.
Alternatively, it can dynamically realize the analog of what
is known in optics as mixing by a beam splitter of two
squeezed modes [31]. This entanglement has been shown
to be resilient to environmental noise (decoherence).
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