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There has been great interest in recent years in quantum control landscapes. Given an objective J that

depends on a control field " the dynamical landscape is defined by the properties of the Hessian �2J=�"2

at the critical points �J=�" ¼ 0. We show that contrary to recent claims in the literature the dynamical

control landscape can exhibit trapping behavior due to the existence of special critical points and illustrate

this finding with an example of a 3-level � system. This observation can have profound implications

for both theoretical and experimental quantum control studies.
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Quantum control aims to manipulate the dynamics of
physical processes on the atomic and molecular scale.
It is a rapidly growing field of science with numerous
applications ranging from selective laser-induced atomic
or molecular excitations to high harmonic generation,
quantum computing and quantum information, and control
of chemical reactions by specially tailored laser pulses,
etc. [1–6].

Generally quantum control problems can be formulated
as the maximization of an objective function Jð"Þ by a
suitable optimal control ". A wide variety of quantum
control phenomena, selective bond breaking, etc., can

be described by control objectives of the form Jð"Þ ¼
Tr½U"ðTÞ�0U

y
" ðTÞO�, where O is an operator describing

the target, �0 is the initial density matrix and U"ðTÞ is the
evolution operator under the action of the control " satisfy-
ing the equation

dU"ðtÞ
dt

¼ �i½H0 ��"ðtÞ�U"ðtÞ; (1)

where H0 is the free system Hamiltonian and � is the
dipole moment.

The objective J ¼ J½"� as a function of the control "
defines the landscape of the control problem. The structure
of the landscape determines the complexity of the under-
lying control problem. Particularly important features
of a control landscape are traps—local maxima of Jð"Þ.
Traps can have a profound influence on both theoretical
and experimental quantum control studies—they can slow
down or even prevent finding globally optimal controls and
can lead to erroneous physical conclusions about optimal
processes and robustness. We show that contrary to recent
claims in the literature [7–12] the dynamical control land-
scape can exhibit trapping behavior due to the existence
of special critical points and illustrate this finding with
an example of a 3-level � system. This observation can
have profound implications for both theoretical and experi-
mental quantum control studies.

To understand why traps are significant, consider the
generic problem of finding a globally optimal control "�

such that Jð"�Þ ¼ Jmax ¼ max"Jð"Þ. Unless the system is
extremely simple, numerical or laboratory optimization
algorithms generally need to be employed. The prevailing
theoretical methods start from an initial trial control "
and use gradient and Hessian (first- and second-order)
information to explore the neighborhood for a control
with better performance. This new control is then used
as a new starting point and the process is iterated.
Experimentally, evolutionary algorithms are commonly
used. While these algorithms are not strictly first- or
second-order, each new generation of controls still has a
propensity to explore the neighborhood of the previous
generation. If the control landscape has traps then first-
and second-order algorithms, which effectively are provid-
ing only a local search over this landscape, can be
prevented from reaching a globally optimal solution "�.
Thus, the existence or absence of traps is a significant
characteristic for any control landscape. Figure 1 shows
landscapes with and without traps.
The analysis of quantum control landscapes was per-

formed in a series of pioneering works [7–12]. Extrema of
trace functions over unitary and orthogonal groups were
also studied in a different context [13,14] and in the context
of quantum control [15,16]. The analysis in [7–12] con-
cluded the absence of traps. In subsequent work it was
established that this conclusion was under the implicit
assumption that the Jacobian �U"=�" has full rank at
any point. Although this assumption was shown to be
violated at times [17], is was believed to be generally
applicable. Recently, a particular example of a trap
was constructed [18]. The present Letter significantly
advances the field by showing that second-order traps—
points at which the Hessian H ¼ �2J=�"2 is negative
semidefinite—exist in a wide class of quantum control
systems [19].
We begin our discussion by distinguishing between

the dynamic and the kinematic control landscapes. Until
now we have been discussing the functional J½"�, but one
may also consider the simpler functional J½U�, where the
dependence of U on " is suppressed:
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JK½U� ¼ Tr½U�0U
yO�: (2)

Equation (2) defines the kinematic control landscape.
A dynamic critical point (DCP) is defined by rJð"Þ ¼
�Jð"Þ=�" ¼ 0 whereas a kinematic critical point (KCP)
is defined by rJKðUÞ ¼ �JðUÞ=�U ¼ 0, where r denotes
gradient. Dynamic and kinematic traps are subopimal
maxima for J½"� and JK½U�, respectively.

Assuming complete controllability, i.e., thatU in (2) can
be any unitary operator, the kinematic control landscape
is known to be free of traps: all critical points of JK½U�
are either global maxima and minima, or saddles [20].
This result implies that the dynamic control landscape
will be trap-free if one additionally assumes that the
Jacobian �U"ðTÞ=�" has full rank at any " [21,22].
Indeed, by the chain rule,

�Jð"Þ
�"

¼ �JK½U"ðTÞ�
�U"ðTÞ

�U"ðTÞ
�"

and hence under the full rank condition all DCP are at
KCP and have exactly the same critical point structure
as the corresponding KCP [23].

Our first result concerns the inequivalence of critical
point structures. To find the condition for a KCP of (2)
we take any infinitesimal variation of U in the form U !
U0 ¼ Uð1þ �UÞ [20]. Unitarity of U0 up to the first order
in �U implies �Uy ¼ ��U; i.e. �U is anti-Hermitian, and
hence the variation of the objective JK with respect to U is
�JK ¼ JK½U0� � JK½U� ¼ Trf�U½�0; OT�g þ oðk �U kÞ,
where OT ¼ UyOU. If U is a critical point for JK½U�,
then the condition �JK ¼ 0 needs to hold for any anti-
Hermitian �U, implying that

½�0; OT� ¼ 0: (3)

Equation (3) is the condition for a KCP. All U satisfying
the condition (3) were shown to be either global maxima,
minima, or saddles [20], and therefore second-order traps
do not exist for kinematic control landscapes. Dynamical
critical control fields that violate (3) were shown to exist
for the problem of optimal population transfer between two
pure states of a quantum systems [18]. We have been able
to generalize this finding by showing that such fields exist
not only for optimal population transfer between two
pure states, but for maximizing the expectation value of a
more general class of observables. The proof is given in
section 3 of the supplemental material [24]. This inequi-
valence of the critical points in the dynamic and kinematic
landscapes is an indication of the breakdown of the full
rank assumption.
We now turn to our main result. For a general class

of systems there exist dynamical critical controls (½�0;
OT� ¼ 0) that are second-order traps due to the violation
of the full rank assumption. In particular, second-order
traps appear in the dynamical control landscape whenever
the dipole moment satisfies �ij ¼ 0 for some i � j (i.e., if

a direct transition between some pair of levels is forbid-
den). In this case there exists an initial density matrix and a
target operator such that "ðtÞ ¼ 0 is a second-order trap.
(Note that the condition �ij ¼ 0 can be consistent with

the assumption of complete controllability of the system
provided that the levels i and j are connected indirectly
through other states.) More generally, a control "ðtÞ ¼ "0
is a second-order dynamical trap if in terms of the spectral

decomposition ~H0 ¼ H0 ��"0 ¼ P
n
i¼1

~hij~iih~ij the initial
density matrix and target operator have the form

�0 ¼ j~kih~kj and O ¼ P
n
i¼1 �ij~iih~ij, where 1< k< n and

�1 > �2 > . . .> �n, and the dipole moment satisfies

h~ij�j~ki ¼ 0 for all i < k. (Again, the condition that

h~ij�j~ki ¼ 0 for any i < k < n can be consistent with the
controllability assumption if the dipole moment connects

the state j~ki with all states j~ii for i < k through other
states.) To prove this finding, we explicitly compute the
Hessian and show that it is negative semidefinite under
the above conditions; the details of the proof are given in
Section 2 of the supplemental material [24].
The simplest example of such a second-order trap ap-

pears in the problem of maximizing the expectation of an
operator O ¼ P

3
i¼1 �ijiihij with �2 > �1 > �3 for a three-

level � atom initially in the state �0 ¼ j1ih1j (Fig. 2). The
dipole moment for � atom satisfies �12 ¼ 0, consistent
with the controllability assumption if �13 � 0 and
�23 � 0. Globally optimal control fields steer j1i com-
pletely into j2i producing the global maximum of the
objective with value Jmax ¼ �2. The control field
"ðtÞ ¼ 0 produces a second-order trap with the objective
value J ¼ �1 < Jmax.

FIG. 1 (color online). Left: Cartoon of a landscape without
traps (local maxima). All peaks are of the same height and
thus all of them are global maxima. From Science 303, 1998
(2004). Reprinted with permission from AAAS. Right: Cartoon
of a landscape with traps. The landscape has one highest peak
representing the global maximum and several peaks of lower
height representing multiple local maxima. Both landscapes
are plotted for two control variables, xj and xk, representing

the control field "ðtÞ at two different time moments. The actual
number of variables in practical applications may be several
hundreds. A local search over the landscape on the left will
eventually reach a global maximum, due to the absence of traps.
However, a local search over the landscape on the right will most
likely find a trap, ending the search process without ever finding
the highest peak.
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In conclusion, we have established that second-order
traps in quantum control landscapes exist in a wide range
of quantum systems. More research will be required to
establish if these points are true traps, but for the local
search algorithms currently in use second-order traps pose
virtually all the same numerical and experimental difficul-
ties as true traps. Moreover, since the present work estab-
lishes that the full rank assumption is violated for a wide
class of quantum systems, the previous claims of the
absence of traps, which were based on this assumption,
have to be completely rethought.
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FIG. 2. The simplest example of a quantum system possessing
a second-order trap is a 3-level � system initially in the ground
state. The control field "ðtÞ ¼ 0 is a second-order trap for
maximizing expectation of any target operator of the form
O ¼ P

3
i¼1 �ijiihij with �2 > �1 > �3.

PRL 106, 120402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 MARCH 2011

120402-3

http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1080/09500340408231805
http://dx.doi.org/10.1103/PhysRevA.72.052337
http://dx.doi.org/10.1103/PhysRevA.72.052337
http://dx.doi.org/10.1103/PhysRevA.73.053401
http://dx.doi.org/10.1103/PhysRevA.73.053401
http://dx.doi.org/10.1088/0953-4075/41/7/074020
http://dx.doi.org/10.1088/0953-4075/41/7/074020
http://dx.doi.org/10.1103/PhysRevA.77.042306
http://dx.doi.org/10.1103/PhysRevA.77.042306
http://dx.doi.org/10.1016/0024-3795(89)90675-7
http://dx.doi.org/10.1016/0024-3795(89)90675-7
http://dx.doi.org/10.1126/science.280.5362.421
http://dx.doi.org/10.1103/PhysRevA.58.2684
http://arXiv.org/abs/0907.2354
http://arXiv.org/abs/1004.3492
http://dx.doi.org/10.1063/1.2198837
http://dx.doi.org/10.1063/1.2198837
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1063/1.2883738
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.120402
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.120402

