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We interpret the maximum global effect caused by locally invariant measurements as measurement-

induced nonlocality, which is in some sense dual to the geometric measure of quantum discord [Dakic,

Vedral, and Brukner, Phys. Rev. Lett. 105, 190502 (2010)]. We quantify measurement-induced nonlocality

from a geometric perspective in terms of measurements, and obtain analytical formulas for any dime-

nsional pure states and 2� n dimensional mixed states. We further derive a tight upper bound to

measurement-induced nonlocality in general case. The physical significance of measurement-induced

nonlocality is discussed in the context of correlations, entanglement, quantumness, and cryptographic

communication.
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Nonlocality is a controversial, perplexing, and yet
fundamental theme in the physical (e.g., gravitational and
quantum-theoretical) descriptions of nature, and has many
intriguing and subtle manifestations [1]. Classically, the
principle of locality dictates that physical effect propagates
by a knowable physical mechanism and is limited by the
speed of light, and nonlocality usually refers to instanta-
neous influence of an object on a distant one in gravitation,
resulting in violation of this principle. Quantum mechani-
cally, nonlocality arises from at least two different scenar-
ios: One is the Aharonov-Bohm effect related to quantum
potential [2], and the other is quantum entanglement in-
volving the Einstein-Podolsky-Rosen type correlations and
the so-called ‘‘spooky-action-at-a-distance’’ [3]. Quantum
nonlocality usually refers to correlations that cannot be
described by any local hidden variable theory, and has been
widely studied by means of Bell’s inequalities [4–8]. It is
intimately related to, but different from, other strange
phenomena such as entanglement and quantumness [9].

In this Letter, by nonlocality, we will understand, in a
most broad way, as some kind of correlations. This is more
general than the conventionally mentioned quantum non-
locality related to entanglement or violation of Bell’s in-
equalities. It is desirable to quantify nonlocality from as
many aspects as possible in order to reveal its meaning
and properties from different angles. As a particular ap-
proach to this program, we will try to quantify nonloca-
lity from a geometric perspective based on von Neumann
measurements.

One motivation for this investigation comes from the
general consideration of exploiting nonlocality for the
purpose of processing quantum information. Many quan-
tum tasks such as superdense coding [10], teleportation
[11], remote state preparation [12–15], etc., involve local
measurements and comparison between the pre- and post-
measurement states. Quantification of nonlocality may
shed novel and deep insight into these tasks and their
extensions. Moreover, since a bipartite state can be used

as a quantum communication channel, and in order to
study various capacities of such channels, it may be helpful
to quantify the nonlocal resources therein.
Our intuitive setup for quantifying measurement-

induced nonlocality is as follows. Consider a bipartite qu-
antum state � shared by two parties a and bwith respective
system Hilbert spaces Ha and Hb. In order to probe the
nonlocal feature in �, we perform local von Neumann
measurements on party a, and investigate the difference
between the overall pre- and post-measurement states. To
capture the genuine nonlocal effect of measurements on the
state, we require the measurements do not disturb the local
state �a :¼ trb� (partial trace). Based on this idea, we may
define the measurement-induced nonlocality (somewhat in
contrast to the measurement-induced disturbance [16]) as

Nð�Þ :¼ max
�a

k���að�Þk2; (1)

where the max is taken over the von Neumann measure-
ments �a ¼ f�a

kg which do not disturb �a locally, that is,P
k�

a
k�

a�a
k ¼ �a, and k � k2 may be any reasonable norm

on states depending on particular applications and con-
texts. Here we take jjXjj2 :¼ trXyX to be the Hilbert-
Schmidt norm. This quantity is an indicator of the global
effect caused by locally invariant measurements [17],
which in turn is inspired and motivated by superdense
coding consideration and related issues [10,18,19]. Our
main purpose here is to illustrate this quantity and evaluate
it for several important cases.
The measurement-induced nonlocality Nð�Þ is funda-

mentally different from, and in some sense dual to, the
geometric measure of quantum discord [20–22]

Dð�Þ :¼ min
�a

k���að�Þk2;

which was first introduced in Ref. [20]. Here the min is
over all local von Neumann measurements �a, in sharp
contrast to the max over locally invariant ones used in
defining the measurement-induced nonlocality Nð�Þ in
Eq. (1). The geometric measure of quantum discord is
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itself motivated by the original quantum discord intro-
duced as a measure of quantum correlations [23–25]. The
relation between Nð�Þ and Dð�Þ is somewhat like the
relation between the entanglement of assistance [26] and
the entanglement of formation [27,28].

The measurement-induced nonlocality provides a novel
classification scheme for bipartite states, and is a quantum
resource quite different from entanglement. It may be
useful in quantitative study of quantum state steering
[29,30], remote state control [12–15,31], general quantum
dense coding [32,33], cryptography, and may shed alter-
native light on these issues. It is particularly relevant to
certain cryptographic communication. For example, con-
sider the task that party a wants to send information to
party b who is faraway. When they share a composite state
�, party a can encode her messages by locally manipulat-
ing her part of the state, and then sends it to party b, who
then decodes the message from the overall joint state.
In order to exclude eavesdropping in the communication,
party a chooses measurements that will not disturb her
local state. In this scenario, it is natural for party a to
choose a measurement which maximizes the difference
between the pre- and post-measurement states in order
for party b to detect the change of the joint state (thus
the encoded messages) most reliably. The eavesdropper
gets no information at all because he is always facing the
same state �a, which is left invariant. One may also con-
sider the task of nonlocality-assisted manipulation of local
states and its implications, just like the entanglement-
assisted manipulation of states [34].

We now list some basic properties of the measurement-
induced nonlocality. (i) Nð�Þ ¼ 0 for any product state
� ¼ �a � �b. (ii) Nð�Þ is locally unitary invariant in the
sense that NððU � VÞ�ðU � VÞyÞ ¼ Nð�Þ for any unitary
operators U and V acting on Ha and Hb, respectively.
(iii) If �a is nondegenerate with spectral decomposition
�a ¼ P

k�kjkihkj, then Nð�Þ ¼ k���að�Þk2 with
�að�Þ ¼ P

kðjkihkj � 1bÞ�ðjkihkj � 1bÞ. This is because
in such a situation, the only von Neumann measurement
that does not disturb �a is �a ¼ f�a

k ¼ jkihkjg, and thus

the max in Eq. (1) is not necessary. In particular,
Nð�Þ vanishes for any classical-quantum state � ¼P

kpkjkihkj � �b
k whose marginal state �a ¼ P

kpkjkihkj
is nondegenerate. (iv) Nð�Þ is strictly positive for any
entangled state � because for any von Neumann measure-
ment�a, the post-measurement state�að�Þ is a classical-
quantum state and thus is separable. In particular, this
implies that � and �að�Þ are always different. (v) For
any Bell state, e.g., j�i :¼ 1ffiffi

2
p ðj00i þ j11iÞ, we have

Nðj�ih�jÞ ¼ 1
2 (by Theorem 1) which achieves the maxi-

mal value of measurement-induced nonlocality in the class
of two-qubit states. In contrast, for the classical state �c ¼
1
2 j0ih0j � j0ih0j þ 1

2 j1ih1j � j1ih1j, we have Nð�cÞ ¼ 1
4

(by Theorem 3). Thus Nðj�ih�jÞ ¼ 2Nð�cÞ, which is
reminiscent of the quantum mutual information relation
Iðj�ih�jÞ ¼ 2Ið�cÞ.

The measurement-induced nonlocality for any pure state
can be evaluated as follows.
Theorem 1.—Let j�i be a bipartite pure state with the

Schmidt decomposition j�i ¼ P
i
ffiffiffiffi
si

p j�ii � j�ii, then
Nðj�ih�jÞ ¼ 1�X

i

s2i : (2)

Interestingly, for any pure state �, the measurement-
induced nonlocality Nð�Þ and the geometric measure of
quantum discord Dð�Þ coincide. However, this is not nec-
essary the case for mixed states.
In order to evaluate the measurement-induced nonlocal-

ity for general bipartite states, let us first recall some
notations for operator Hilbert spaces. Let LðHaÞ be the
Hilbert space of linear operators with the inner product
hXjYi :¼ trXyY. In this space, a family of operators fXi :¼
i ¼ 0; 1; � � � ; m2 � 1g is called an orthonormal operator
base if hXijXji ¼ �ij. Let fXi: i ¼ 0; 1; 2; � � � ; m2 � 1g
and fYj: j ¼ 0; 1; 2; � � � ; n2 � 1g be orthonormal

Hermitian operator bases for LðHaÞ and LðHbÞ, respec-
tively, with X0 ¼ 1a=

ffiffiffiffi
m

p
and Y0 ¼ 1b=

ffiffiffi
n

p
, then a general

bipartite state � can always be represented as

� ¼ 1ffiffiffiffiffiffiffi
mn

p 1affiffiffiffi
m

p � 1bffiffiffi
n

p þ Xm2�1

i¼1

xiXi � 1bffiffiffi
n

p

þ 1affiffiffiffi
m

p � Xn2�1

j¼1

yjYj þ
Xm2�1

i¼1

Xn2�1

j¼1

tijXi � Yj: (3)

Theorem 2.—For � represented as Eq. (3), we have

Nð�Þ � Xm2�m

i¼1

�i; (4)

where f�i: i ¼ 1; 2; � � � ; m2 � 1g are the eigenvalues of
the matrix TTt listed in decreasing order, and T :¼ ðtijÞ
is an ðm2 � 1Þ � ðn2 � 1Þ dimensional matrix, the super-
script t denotes transpose of matrices. Furthermore, if
�a :¼ trb� is nondegenerate with spectral projections
fjkihkjg; then

Nð�Þ ¼ trTTt � trATTtAt: (5)

Here, A :¼ ðakiÞ is an m� ðm2 � 1Þ dimensional matrix
with

aki :¼ trjkihkjXi; i ¼ 1; 2; � � � ; m2 � 1: (6)

For any 2� n dimensional system, due to the special
structure of Bloch representations for the marginal qubit
states, we have the following closed formula, which in-
dicates that inequality (4) is tight.
Theorem 3.—Following the notations in Theorem 2,

if m ¼ 2, then

Nð�Þ ¼
(
trTTt � 1

kxk2 x
tTTtx if x � 0;

trTTt � �3 if x ¼ 0:
(7)

Here TTt is a 3� 3 dimensional matrix with �3 being
its minimum eigenvalue, and kxk2 :¼ P

ix
2
i with

x ¼ ðx1; x2; x3Þt.
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Nonlocality is often related to quantumness and one
usually speaks about quantum nonlocality, but there is
nonlocality without quantumness [35], just as there is non-
locality without entanglement [36–39]. The measurement-
induced nonlocality is a different notion from quantumness
of correlations. Even for classically correlated states [16],
there may exist nonlocal effects. The underlying reason for
this is that when a classically correlated state is expressed
in some particular base, it is classical only with respect to
this base, when other bases are involved, it will not be
classical and thus may naturally contain nonlocality.
‘‘Quantumness’’ and ‘‘nonlocality’’ are relative notions.

To summarize, we have obtained the exact analytical
formulas of measurement-induced nonlocality for any pure
states, 2� n dimensional states, as well as any states with
nondegenerate marginals. We have further established a
tight upper bound for general states, and have indicated
the physical significance of measurement-induced nonlo-
cality in certain quantum tasks such as quantum commu-
nication. The measurement-induced nonlocality can be
practically estimated by quantum tomography and its ex-
perimental investigation in the related setup of Ref. [40]
may be interesting. Finally, we propose the challenging
problems of finding an analytical formula of Nð�Þ for an
arbitrary state and providing an operational interpretation
for measurement-induced nonlocality.

Appendix.—Proof of Theorem 1 is in the supplemental
material [41]. Proof of Theorem 2. We first observe that

�a ¼ trb� ¼ 1

m
1a þ ffiffiffi

n
p Xm2�1

i¼1

xiXi:

Now suppose that�a ¼ f�a
kg is a von Neumann measure-

ment leaving �a invariant, that is,
P

k�
a
k�

a�a
k ¼ �a, then

�a ¼ P
kðtr�a

k�
aÞ�a

k is a spectral decomposition of �a.

Noting that

���að�Þ ¼ Xm2�1

i¼1

Xn2�1

j¼1

tij

�
Xi �

X
k

�a
kXi�

a
k

�
� Yj;

if we put aki ¼ tr�a
kXi, then

k���að�Þk2

¼ tr
X
ii0jj0

tijti0j0
�
Xi �

X
k

�a
kXi�

a
k

�

�
�
Xi0 �

X
k

�a
kXi0�

a
k

�
� YjYj0

¼ X
ii0jj0

tijti0j0
�
trXiXi0 �

X
k

akiaki0
�
� �jj0

¼ X
ij

t2ij �
X
ii0jk

tijti0jakiaki0 ¼ trTTt � trATTtAt:

If �a is nondegenerate, then the only von Neumann mea-
surement leaving the marginal state �a invariant is �a ¼
f�a

k ¼ jkihkjg, and we obtain the desired Eq. (5).

When �a is degenerate, we need to consider the opti-
mization problem

max
A

ðtrTTt � trATTtAtÞ ¼ trTTt �min
A

trATTtAt

subject to the constraint that A is defined via Eq. (6)
with fjkihkjg being any von Neumann measurement leaving
�a invariant. From Eq. (6) and putting ak0 :¼ trjkihkjX0 ¼
1=

ffiffiffiffi
m

p
, we know that faki: i ¼ 0; 1; � � � ; m2 � 1g are the

(real) coefficients for expanding the operator jkihkj in the
operator orthonormal base fXi: i ¼ 0; 1; � � � ; m2 � 1g,
and thus

Xm2�1

i¼0

akiak0i ¼ trjkihkjk0ihk0j ¼ �kk0 ; k; k0 ¼ 1; 2; � � � ;m:

Recall that ak0 ¼ 1=
ffiffiffiffi
m

p
for k ¼ 1; 2; � � � ; m, we obtain

Xm2�1

i¼1

a2ki ¼
m� 1

m
; k ¼ 1; 2; � � � ; m; (8)

Xm2�1

i¼1

akiak0i ¼ � 1

m
; k � k0 (9)

Equations (8) and (9) can be compactly expressed as

AAt ¼ 1

m

m� 1 �1 � � � �1

�1 m� 1 � � � �1

..

. ..
. ..

. ..
.

�1 �1 � � � m� 1

0
BBBBBB@

1
CCCCCCA; (10)

which is a real matrix with eigenvalues 0 and 1 (of multi-
plicity m� 1), and can be diagonalized as AAt ¼ UDUt

with U a real unitary matrix (thus Uy ¼ Ut ¼ U�1), and

D ¼ 1m�1 0

0 0

 !

is a matrix of order m�m, where 1m�1 denotes the unit
matrix of order m� 1.
Put

B :¼ UtA; (11)

then the constraint Eq. (10) is equivalent to

BBt ¼ 1m�1 0
0 0

� �
: (12)

Consequently, B can be written as

B ¼ C
0

� �
(13)

and Eq. (12) is equivalent to CCt ¼ 1m�1: Now

Nð�Þ ¼ trTTt �min
A

trATTtAt ¼ trTTt �min
C

trCTTtCt;

(14)
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where the optimization is over C arising from Eqs. (6), (10),
(11), and (13). In particular, C satisfies CCt ¼ 1m�1: If we
only consider this latter constraint, then

min
C: CCt¼1m�1

trCTTtCt ¼ Xm2�1

i¼m2�mþ1

�i:

Therefore, we conclude that

Nð�Þ � trTTt � Xm2�1

i¼m2�mþ1

�i ¼
Xm2�m

i¼1

�i;

which is the desired inequality (4).
Proof of Theorem 3. The result follows from the proof of

Theorem 2. First, noting that �a ¼ 1
2 1

a þ ffiffiffi
n

p P
3
i¼1 xiXi is

nondegenerate if and only if x � 0, and in this instance, its
eigenprojections are

�a
1 ¼ 1a

2
þ
P

3
i¼1 xiXiffiffiffi
2

p kxk ; �a
2 ¼

1a

2
�
P

3
i¼1 xiXiffiffiffi
2

p kxk :

Therefore,

a1i ¼ tr�a
1Xi ¼ xiffiffiffi

2
p jjxjj ¼ �a2i; i ¼ 1; 2; 3:

Combining these with Eq. (5), we obtain the first equation
in (7). If x ¼ 0, then �a is degenerate, but since a2i ¼
�a1i, and �a ¼ 1

2 1
a þ ffiffiffi

n
p P

3
i¼1 xiXi is an operator repre-

senting a pure state if and only if kxk2 ¼ 1
2n (this is not

the case for higher dimensional Bloch representation
[42,43]), the optimization problem (14) reduces to
minC: CCt¼1trCTT

tCt ¼ �3, from which the second equa-
tion in (7) follows.
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