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A geometrically polar granular rod confined in 2D geometry, subjected to a sinusoidal vertical

oscillation, undergoes noisy self-propulsion in a direction determined by its polarity. When surrounded

by a medium of crystalline spherical beads, it displays substantial negative fluctuations in its velocity. We

find that the large-deviation function (LDF) for the normalized velocity is strongly non-Gaussian with a

kink at zero velocity, and that the antisymmetric part of the LDF is linear, resembling the fluctuation

relation known for entropy production, even when the velocity distribution is clearly non-Gaussian. We

extract an analogue of the phase-space contraction rate and find that it compares well with an independent

estimate based on the persistence of forward and reverse velocities.
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When a particle moves under the influence of a driving
force through a noisy medium, it occasionally moves in the
direction opposite to the force. The probability of such
entropy consumption, relative to production, has been
shown to obey the well-known fluctuation relations (FR)
[1], which are a symmetry property of the large-deviation
function (LDF) [2] of the entropy-production rate.
Experiments on a surprising range of nonequilibrium sys-
tems find behavior consistent with the FR [3–15], includ-
ing athermal systems [15], where the noise is a
consequence of the driving.

In this Letter, we study the velocity statistics of a geo-
metrically polar particle in a dense monolayer of beads on
a vertically agitated horizontal surface. The continuous
input of energy through mechanical vibration is balanced
by dissipation into the macroscopic number of internal
degrees of freedom of each particle. Agitation feeds energy
into the tilting vertical motion of the polar particle, which
transduces it, via frictional contact with the base, into
horizontal movement in a direction determined by its
orientation in the plane [16–20]. The particle thus behaves
like a noisy self-propelled object, with a statistically sig-
nificant tendency to move in the ‘‘reverse’’ direction, i.e.,
opposite to its mean direction of spontaneous motion. We
are interested in large deviations of the velocity.
Accordingly, let PðW�Þ be the probability density of
W�ðtÞ ¼ ð1=�ÞRtþ�

t ½Vðt0Þ=hVi�dt0, where VðtÞ�vðtÞ � n̂ðtÞ
with vðtÞ and n̂ðtÞ are the particle velocity and orientation
vector in the plane, and hi denotes an average over the time
t. The LDF is then FðW�Þ � lim�!1ð�1=�Þ lnPðW�Þ. If
W� were the entropy-production rate the FR would read
FðW�Þ � Fð�W�Þ / W�.

Our experimental results are as follows: (i) The particle
velocity statistics satisfy a large-deviation principle. We
are able to extract the LDF, FðW�Þ, and find that the
corresponding probability is strongly non-Gaussian,
with a kink at zero [21]. (ii) The antisymmetric part

FðW�Þ � Fð�W�Þ / W�, i.e., the velocity obeys the ana-
logue of a fluctuation relation. (iii) From the velocity
statistics, we calculate an analogue of phase-space con-
traction rate and show that it correlates surprisingly well
with the difference in the persistence rates of negative and
positive velocities. The need for such an independent
estimate for contraction rates, in a fluctuation-relation
context, has been emphasized recently [23].
Two clarifications are essential here: (a) In principle, we

are not measuring the LDF for the entropy-production rate,
as the distributions of power and velocity are distinct for
general time-dependent driving; indeed, we have no access
to the time series of the propulsive force. We know of no
earlier reports of symmetry relations analogous to the FRs
for large deviations of the velocity [24]. (b) Such a relation
would hold trivially if the velocity statistics happened to be
Gaussian. We will see that the velocity statistics of our
particle is far from Gaussian.
Our experimental cell is a shallow circular geometry, of

diameter D ¼ 13 cm, made of hardened aluminum alloy.
To confine the particles to two dimensions, a glass lid is
fixed on the external perimeter of the circle at a height of
1.2 mm above the base. We ensured that base and lid were
uniformly flat to within 10 �m accuracy. This geometry is
mounted on a permanent magnet shaker (LDS 406=8) and
is shaken at a fixed frequency f ¼ 200 Hz and amplitude
a0 between 0.019 and 0.047 mm. The resulting accelera-
tions � � a0ð2�fÞ2=g, measured by an accelerometer
(PCB Piezotronics 352B02) and nondimensionalized by
gravity g, lie between 3.0 and 7.5. We ensured that our
apparatus was level to the accuracy of a spirit level; our
results are insensitive to small deviations in levelling. The
dynamics of the particles is recorded by a high-speed
digital camera (Redlake MotionPro X3) mounted verti-
cally above the plate, with a maximum resolution of
1024� 1280. The frame rate used was 50 fps for all the
results presented. The resolution of the resulting imagewas
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0.1 mm which corresponds to a pixel length. The images
were analyzed using ImageJ [25].

Our ‘‘self-propelled’’ polar particle is a brass rod,
4.5 mm long and 1.1 mm in diameter at its thick end as
shown in Fig. 1(a). On a bare surface the dynamics is as
follows: When confined between horizontal plates and
shaken at �> 4:5 it moves on average with narrow end
forward along the arrow in Fig. 1(a), which we term the
positive velocity direction. We determined the position
and, thanks to the shape asymmetry of the particle, the
orientation of the particle in each frame [26], and extracted
the instantaneous particle velocity along its axis. Gray bars
show a typical distribution of normalized velocity (V=hVi)
of this particle at � ¼ 7:5 in Fig. 1(c), clearly showing the
tendency towards systematic directed motion with exceed-
ingly rare backsteps. Below � ¼ 4:5 the same particle
gradually starts showing a substantial number of
negative-velocity events whose significance we will dis-
cuss later.

We then studied the motion of the polar particle when
the experimental plate is filled with a close-packed mono-
layer of aluminum beads of diameter d ¼ 0:8 mm. Note
that the 1.2 mm gap thickness between base and lid leaves a
clearance of 0.4 mm above the beads, and 0.1 mm above
the thick end of the polar rod, allowing the play that keeps
the system ‘‘alive.’’ We study the velocity statistics of the
polar particle as it pushes its way through a medium at area
fraction � � Nðd=DÞ2 � 0:8 where N is the total number
of beads. At these concentrations the beads form a trian-
gular lattice [Fig. 1(b)]. Black bars in Fig. 1(c) show the
normalized velocity distribution of the polar particle at
� ¼ 7:5,� ¼ 0:83. Note the significant weight at negative

velocities. Figure 1(d) shows the mean-square displace-
ment (MSD) plot of the polar particle with and without the
medium. We see that the particle which moved ballistically
at all time scales in the absence of a medium shows, when
surrounded by beads, a sub-ballistic short-time motion
(MSD� t1:6) which we attribute to short-time negative-
velocity events.
Typical fluctuations in the velocity of the particle are

shown in the time series in Fig. 2(a), which has an auto-
correlation time <0:02 s. Approximately 50 000 frames
were captured and the velocity obtained from every pair
of successive frames. Negative events are clearly visible.
After evaluatingW� and corresponding probability PðW�Þ,
our aim is to obtain an LDF FðW�Þ. To this end we con-
struct the time series ofW�, dividing the VðtÞ=hVðtÞi series
into different bins of length � and averaging over over-
lapping bins where the center of each bin is shifted from
the previous one by a time difference 0.02 s to improve

FIG. 1 (color online). (a) Vertical cross section of the polar
particle: the fat arrow indicates the mean direction of ‘‘self-
propelled’’ motion. (b) A typical experimental screen-shot show-
ing the particle finding its way through a crystalline medium of
0.8 mm aluminum beads. (c) Comparison of normalized velocity
distributions of polar particle without (gray bars) and with (black
bars) medium. (d) Mean-square displacement (MSD) with and
without medium particles. Short-time exponent (with medium)
and long-time exponents (for both cases) displayed.

FIG. 2 (color online). (a) Typical velocity fluctuations of polar
particle in bead medium, with dashed line indicating mean
velocity. All data except in (d) are for � ¼ 7:5, � ¼ 0:83.
(b) Probability distribution ofW� for various �. Note exponential
negative tail and flat peaks. (c) The collapsed large-deviation
function. Inset shows kurtosis (K) and skewness (S) plotted as a
function of � clearly indicating the strongly non-Gaussian nature
of the distributions. (d) Large-deviation function shown for
� ¼ 6:5 and � ¼ 0:83 and corresponding kurtosis (K) and
skewness (S). (e) Linear dependence of lnPðþW�Þ=Pð�W�Þ
on W�; � ¼ 0:04 s, 0.10 and 0.30 s and (f) Data collapse
of ð1=�Þ lnPðþW�ÞPð�W�Þ vs W� onto a single line for all
� � 0:04 s for � ¼ 7:5 and � ¼ 0:83.
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statistics. The results presented here are not sensitive to
the value of the time difference used in the analysis.
Figure 2(b) shows the probability distribution for W� for
� ¼ 0:04 s and 0.16 s. The distributions are highly non-
Gaussian with exponential tails on the negative side.

To bring out the non-Gaussian nature, we calculate
the skewness S ¼ h�W3

�i=�3 and kurtosis K ¼
h�W4

�i=�4 � 3, where �W� ¼ W� � hW�i and �2 ¼
h�W2

�i. Note that S ¼ 0 ¼ K for a Gaussian distribution.
It is clear from the inset to Fig. 2(c) that the distributions of
W� are highly skewed towards positive values at low �, and
become flatter around the mean at large �.

In order to extract the LDF from our data, we begin by
writing PðW�Þ ¼ A� exp½��FðW�Þ�, allowing for a prefac-
tor A� independent of W� and varying more slowly than
expð��Þ. As F is expected [2] to vanish at the most
probable or typical value of W�, we estimate A� by the
maximum value of PðW�Þ. We evaluate ð�1=�Þ�
ln½PðW�Þ=A��, find data collapse for � > 0:12 s, and ob-
tain the LDF. Figure 2(c) shows FðW�Þ for � ¼ 0:20, 0.30
and 0.40 s covering almost the entire range of W�. FðW�Þ
shows a sharp kink at zero, remaining almost flat between 0
and 1. Figure 2(d) shows the LDF obtained for yet another
case, � ¼ 6:5 at � ¼ 0:83. The distribution is again non-
Gaussian though K and S are low [see inset in Fig. 2(d)],
and a kink at zero can be seen. We have no explanation for
the difference in the behaviours of K in Figs. 2(c) and 2(d).

A comparison is in order to the theoretically predicted
LDF of the entropy-production rate for a colloidal particle
driven by a constant force through a periodic potential [22].
The resemblance of our LDF [Fig. 2(c)] to their Fig. 1,
bottom row, center panel, is striking. Note however that we
are measuring the LDF for the velocity, not the entropy
production as in [22]. If the motion of our polar particle can
be approximated as propelled by a constant force, then our
results can be viewed as a confirmation of the predictions
of [22], albeit in a slightly more complicated medium. If it
turns out that the propulsive force in our case has signifi-
cant time dependence, our results are all the more intrigu-
ing. At present however we have no independent way of
obtaining a time series for the force on the particle.

We now examine the relative probabilities of positive
and negative coarse-grained normalized velocities W�. We
find that ln½PðþW�Þ=Pð�W�Þ� is linear inW�, as shown in
Fig. 2(e) for � ¼ 0:04 s, 0.10 and 0.30 s (only three �
values shown for clarity). This linearity persists to the
highest � values where the distribution is clearly non-
Gaussian. Moreover, Fig. 2(f) shows that ð1=�Þ�
ln½PðþW�Þ=Pð�W�Þ� vs W� collapses onto a single
straight line for all � values; the slope �¼43:7�5:2 s�1.
We find a similar result for other values of � and �. We
conclude that the antisymmetric part of the LDF is linear in
W�; i.e., FðW�Þ � Fð�W�Þ / W�. By analogy with the
Gallavotti-Cohen SSFR [1] for entropy flux, we are
tempted to suggest a fluctuation relation for the particle’s

normalized velocity: lim�!1ð1=�Þ lnPðþW�Þ=Pð�W�Þ ¼
�W�. � may be regarded as similar to the phase-space
contraction rate in the conventional SSFR [1]; we return to
this point later.
For comparison we repeat our experiment without the

bead medium, working at a lower � ¼ 3:0 where the
particle on a bare plate shows frequent negative-velocity
events [27]. Figure 3(a) shows the velocity time series and
Fig. 3(b) shows the distribution of W� for � ¼ 0:06 s,
0.22 s and 0.70 s. The trend seen here, contrary to that
with the bead medium, is of a non-Gaussian distribution at
lower � ¼ 0:06 s, becoming progressively more Gaussian
as we integrate the time series for higher �. It is clear from
Fig. 3(c) that both skewness and kurtosis decrease with �.
The quantity ð1=�W�Þ ln½P�ðþWÞ=P�ð�WÞ� approaches a
�-independent constant only for � � 0:20 s [see Fig. 3(d)]
where both non-Gaussian parameters are significantly low.
This is unlike the case where the particle moves through
the bead bed, where this behavior persisted even when the
distribution was noticeably non-Gaussian.
Returning to the case with a bead-bed, we repeated the

experiment for various combinations of� and �. We found
that in all cases the antisymmetric part of the LDF for the
velocity was linear, and obtained a range of � values. We
now suggest that the � can be estimated independently,
without reference to the LDF, as follows: We extract the
probability PþðtÞ that a particle moving with positive
velocity at time 0 continues to do so up to time t, and
similarly P�ðtÞ for negative velocity. Each is found to
decay exponentially, with rates �þ and �� respectively
as shown in Fig. 4 inset. Since �� and �þ respectively

FIG. 3 (color online). (a) Typical velocity time series of polar
particle without bead medium, at � ¼ 3:0; dashed line again
indicates mean velocity. (b) Probability distribution of W� for
� ¼ 0:06, 0.22, and 0.70 s. (c) Kurtosis (K) and skewness (S) as a
function of � indicating tendency to become more Gaussian at
higher �. (d) ð1=�Þ lnPðþW�Þ=Pð�W�Þ vs W�, shows a collapse
only for � � 0:20 s.
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measure the mean rates of escape from regions of negative
(atypical) and positive (typical) velocity, it seems plausible
that the overall relaxation rate of the system should be the
difference of the two, i.e., � ¼ �� � �þ. Indeed, Fig. 4
shows a convincing correlation between � and �� � �þ
for a range of � and �. The data for a particle moving at
� ¼ 3:0 on a bare plate, as well as that for motion at
� ¼ 7:5 in the one-dimensional circular track mentioned
above, were also analyzed in the same manner (Fig. 4) and
confirm the correlation between � and �� � �þ. We re-
mark that this is an empirical finding motivated by an
intuitive conjecture, and can be tested only through further
theoretical and experimental study.

In conclusion, we have shown that a geometrically polar
particle, when energized by vertical vibration and im-
mersed in an array of spherical beads, displays frequent
steps in the sense opposite to its mean direction of sponta-
neous motion. The resulting velocity distribution is highly
non-Gaussian, and the large-deviation function (LDF)
shows a kink at zero velocity, as in [22]. Most intriguingly,
the antisymmetric part of the LDF is linear, i.e., the veloc-
ity fluctuations obey a symmetry relation analogous to
those known [1] for the entropy-production rate. We pro-
vide an independent estimate of the analogue of a phase-
space contraction rate, in terms of persistence rates of
positive and negative velocities.
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FIG. 4 (color online). Analogue of phase-space contraction
rate � vs �� � �þ, the difference in persistence rates of
negative and positive velocities. Solid squares: � ¼ 0:83 (� ¼
7:5, 6.5, 5.5, 4.5); solid circles: � ¼ 0:82 (� ¼ 7:5, 5.5); solid
triangles: � ¼ 0:81 (� ¼ 7:5, 6.5, 5.5); solid diamonds: � ¼
0:80 (� ¼ 7:5, 6.5, 5.5). The values for the case of a bare
substrate at � ¼ 3:0 (open star) and the circular 1d channel at
� ¼ 7:5 (open circle) are also shown. The solid line depicts � ¼
ð�� � �þÞ. Inset: log-linear plot of PþðtÞ and P�ðtÞ vs time t,
with slopes �þ and ��, respectively.
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