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A model of electrons hopping from atom to atom in graphene’s honeycomb lattice gives low-energy

electronic excitations that obey a relation formally identical to a 2þ 1 dimensional Dirac equation.

Graphene’s spin equivalent, ‘‘pseudospin,’’ arises from the degeneracy introduced by the honeycomb

lattice’s two inequivalent atomic sites per unit cell. Previously it has been thought that the usual electron spin

and the pseudospin indexing the graphene sublattice state are merely analogues. Here we show that the

pseudospin is also a real angular momentum. This identification explains the suppression of electron

backscattering in carbon nanotubes and the angular dependence of light absorption by graphene.

Furthermore, it demonstrates that half-integer spin like that carried by the quarks and leptons can derive

fromhidden substructure, not of the particles themselves, but rather of the space inwhich these particles live.
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‘‘Spin’’ refers to an angular momentum that has no
classical analogue—it is not possible to understand spin
in terms of a mechanical model of some rotating object
[1]. The net angular momentum of composite particles,
such as protons, neutrons, atoms, and molecules, derives
from the spins of their constituents, plus any orbital an-
gular momenta due to the constituents’ relative motion.
Spin and orbital angular momenta are quantitatively dis-
tinguishable, since the former can be half-integer while
the latter take on integer values only, measured in units of
the reduced Planck constant @. In the standard model of
particle physics the ultimate constituents of matter are the
quarks and leptons. These particles have no internal struc-
ture down to length scales of 10�18 m (limited by the
collision energies �200 GeV currently achievable in par-
ticle accelerators) [2], so their spins are considered
intrinsic.

The deepest insight into the origin of spin has been
provided by Dirac, who manipulated Einstein’s quadratic
energy-momentum relation E2 ¼ p2c2 þm2c4 to give a
linear equation consistent with the postulates of quantum
mechanics. Dirac’s equation predicts not only spin but also
antiparticles, which were unknown at the time. Thus we
understand, for example, the electron’s spin @=2 and the
existence of the positron as natural consequences of the
Dirac equation, which is built on the theories of relativity
and quantum mechanics. As was pointed out 25 years ago
[3,4], the low-energy electronic excitations in graphene
obey a 2þ 1 dimensional Dirac equation, with holes and
the sublattice state playing the role of positrons and spin,
respectively. In this Letter we show that the sublattice state
vector describes an ‘‘intrinsic’’ angular momentum in
3þ 1 dimensions. This identification provides a physical
model that associates spin with an underlying structure.
Unlike the case of composite particles, where spin follows
from other spins, in this example the spin @=2 is a

consequence of the nontrivial spatial lattice, invisible at
low energies, that hosts the particle.
Graphene’s Dirac equation follows from the tight-

binding (i.e., hopping) model, which was first applied to
graphene by Wallace [5]. With the experimental isolation
of carbon nanotubes [6] and, more recently, graphene itself
[7], the hopping model has been shown to give an effective
description of these real materials [8,9]. Furthermore, gra-
phene equivalents of the quantum relativistic effects im-
plied by the Dirac equation, such as Klein tunneling and
Zitterbewegung, are now experimentally accessible, mak-
ing this condensed matter system a practical test bed for
these particle physics phenomena [10,11].
We first show how the hopping model produces the

2þ 1 dimensional Dirac equation, working in 3þ 1 di-
mensions but without initial reference to specific coordi-
nate axes. Graphene’s electronic states are described as a
linear combination [12] of atomic orbitals constructed to
fulfill the Bloch condition �QðrþRÞ ¼ eiQ�R�QðrÞ,

�QðrÞ ¼
XN
j

eiQ�Rjffiffiffiffi
N

p ½cAQ�ðr�RA
j Þ þ cBQ�ðr�RB

j Þ�; (1)

where j ¼ ðm; nÞ indexes the N sites of the hexagonal
Bravais lattice described by Rj ¼ ma1 þ na2, and the

vectors RA
j (RB

j ) point to the ‘‘A’’ (‘‘B’’) sublattice sites

within the unit cell j, respectively (see Fig. 1). Indices
labeling the usual electron spin have been suppressed for
notational convenience and will be henceforth. The coef-
ficients cQ multiplying the carbon atoms’ 2Pz atomic

orbitals �ðrÞ are chosen to solve the crystal Hamiltonian.
The electronic Hamiltonian contains two kinds of terms,

one representing an electron’s energy on a particular site,
and the other representing the energy advantage conferred
by the freedom to hop to a neighboring site. Nearest-
neighbor hopping is parametrized by an energy t,
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and next-nearest-neighbor and higher order effects are
neglected. An electron occupying the state �ðr�RA

j Þ is
described by an operator Ay

Rj
that creates an electron on

the ‘‘A’’ site in cell j when it acts on the vacuum state j0i.
With similar language for the ‘‘B’’ sites, the graphene
Hamiltonian is

H ¼X
j

ðEAA
y
Rj
ARj

þ EBB
y
Rj
BRj

Þ � t
X
hi;ji

ðAy
Ri
BRj

þ H:c:Þ;

(2)

where the notation hi; ji indicates sums over all sites j and
their nearest neighbors i. In graphene the A sites are
identical to the B sites modulo a � rotation, so the energies
EA ¼ EB. Following Semenoff [4], we allow for different
site energies (EA � EB), as in hexagonal boron nitride, and
take the graphene limit where appropriate.

Introducing the Fourier transform of the operators

ARi
¼ P

jAQj
expðiRi �QjÞ=

ffiffiffiffi
N

p
, where the Qj ¼ m

N1
b1 þ

n
N2
b2 are the N ¼ N1N2 wave vectors in the first Brillouin

zone, puts the Hamiltonian (2) in the form

H ¼ X
j

ðAy
Qj

By
Qj
ÞH AQj

BQj

 !
; (3)

where we have used the closure relation
P

je
iRj�ðQ�Q0Þ ¼

N�Q;Q0 , and defined the single particle Hamiltonian

H ¼ �t
��=t 1þ e�iQ�a1 þ e�iQ�a2

1þ eiQ�a1 þ eiQ�a2 �=t

 !
:

(4)

Here the energy difference � is defined by � �
ðEA � EBÞ=2, and the energy origin is chosen such that
ðEA þ EBÞ=2 ¼ 0. Graphene has two atoms per unit cell,
each of which donates one electron to the valence band,

so in the lowest approximation the first Brillouin zone is
exactly filled. Thus the Fermi energy is zero here.
The off-diagonal matrix elements of the H matrix (4)

vanish at the corners Q ¼ K of the Brillouin zone (see
Fig. 1), which in the graphene case EA ¼ EB leads to the

famous degeneracy at these ‘‘Dirac points’’: K� ¼
� 2b2þb1

3 þmb1 þ nb2 [12]. Here � ¼ �1 is the ‘‘valley’’

index that distinguishes the two inequivalent types of K
points. To see the structure of low-energy excitations near
the Dirac points we define k ¼ Q�K and restrict our
analysis to the case where k � ai is small. Recalling
ai � bj ¼ 2��ij, to lowest order

H ¼ �
ffiffiffi
3

p
takð�âd � iâsÞ=2ffiffiffi

3
p

takð�âd þ iâsÞ=2 ��

 !
;

(5)

where we have defined difference and sum unit vectors

âd ¼ ða1 � a2Þ=a and âs ¼ ða1 þ a2Þ=
ffiffiffi
3

p
a. (A third vec-

tor ân � âd � âs normal to the plane will also prove
useful.) The Hamiltonian (5) is a rotational invariant, de-
pending only on scalars and the scalar products of 3D
vectors. As shown in Fig. 1, the eigenvalues of H are
independent of the direction of k near K, which is to say
that the Hamiltonian is effectively isotropic in the plane—
the lattice has disappeared.
The analysis leading to (5) has been entirely in terms of

the basis vectors of the direct and reciprocal lattices of
the honeycomb structure, and is independent of any choice
of orientation for a 3D Cartesian coordinate system.
The predictions of the theory are independent of this
choice. Two particular orientations put H in familiar
and suggestive forms. Choosing the coordinate orientations
labeled ‘‘D’’ and ‘‘P’’ in Fig. 1, defining the Fermi velocity

vF ¼ ffiffiffi
3

p
at=2@, and writing the momentum p ¼ @k gives

H D ¼ vFð��xpy � �ypxÞ þ �z� and (6a)

H P ¼ vFð��xpx þ �ypyÞ þ �z�; (6b)

where the �j are the usual Pauli matrices. The matrixH D

(6a) illustrates the connection between the graphene
Hamiltonian and the Dirac equation. In 3þ 1 dimensions
the Dirac Hamiltonian is H ¼ c�0ð� � pþmcÞ, with
4� 4 matrices �� ¼ ð�0;�Þ. In 2þ 1 dimensions the
necessary anticommutation relations f��; ��g ¼ 2g�� ¼
2� diagð1;�1;�1Þ can be satisfied with a 2� 2 repre-
sentation such as �� ¼ ð�0; ~�Þ ¼ ð�z; i�x; i��yÞ. With

this definition the Hamiltonian matrix (6a) becomes
H ¼ vF�

0ð ~� � ~pþm0vFÞ, with an effective mass m0 de-
fined by � ¼ m0v2

F. (We designate the first two co-
mponents of a 3D vector with an arrow, e.g., p ¼ pxx̂þ
pyŷ þ pzẑ ¼ ~pþ pzẑ.) Thus this hopping model gives

low-energy electronic excitations that obey a 2þ 1 dimen-
sional Dirac equation, with the Fermi velocity vF playing
the usual role of the speed of light c.
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FIG. 1. The honeycomb lattice in real space (left) and the
corresponding band structure in reciprocal space (right). On
the left, gray and black circles represent A and B lattice sites,
respectively. One choice of unit cell is demarcated with a dashed
line. Coordinate axes oriented to give the Pauli and Dirac forms
of the electronic Hamiltonian are labeled ‘‘P’’ and ‘‘D.’’ On the
right, the hexagonal first Brillouin zone is shown, with the
positions ofKþ points indicated by thin arrows. While generally
the contours of constant energy [based on the full Hamiltonian
(4)] show threefold or sixfold rotational symmetry, near the
points K� they are circular [8,12].
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With the P coordinate orientation graphene’s
Hamiltonian matrix has the convenient abbreviation
H ¼ vF ~� � ~p near Kþ. Sometimes this is written
H ¼ vF� � p, which can give the impression that either
�z or pz is strictly zero. In fact, both � and p have three
nonzero components; it just happens that �z and pz do not
appear in the grapheneH . While any state confined to the
sheet must have an expectation value hpzi ¼ 0, because the
electrons are localized in z the characteristic magnitude of
pz is @=az, where az is a length scale measuring the z extent
of the 2Pz orbitals of the expansion (1). Taking pz ¼ 0 is
just as improper for an electron in a honeycomb lattice as it
is for an electron in an atomic Coulomb potential. The case
of �z will be taken up below.

It is not obvious whether �, which indexes the ‘‘pseu-
dospin’’ arising from the AB sublattice degeneracy, corre-
sponds to a real angular momentum [3,13]. It might
describe a merely analogous two-state system, borrowing
the same SUð2Þ algebra like the isospin symmetry con-
necting the proton and neutron. Comparison with the 3þ 1
dimensional Dirac equation makes this second option look
likely. The 4� 4Dirac matrices give each state two qubits,
one each for particle or antiparticle and spin-up or spin-
down values. Since the pseudospin labels the band index 	
[see Eq. (9) below] and the 2D Dirac matrices are only
2� 2, it would seem that the one qubit available is
engaged.

Surprisingly, this one qubit covers both variables. The
pseudospin is related to a real angular momentum, as can
be discovered by calculating the commutator of the
Hamiltonian with the orbital angular momentum
L ¼ r� p,

½H P;L� ¼ �i@vF

�ypz

���xpz

��xpy � �ypx

0
BB@

1
CCA: (7)

That the Hamiltonian has rotational symmetry about the
axis perpendicular to the plane and the commutator
[H P, Lz] is not zero together indicate that there is another
angular momentum in the problem.

In coordinate-independent notation the honeycomb
Hamiltonian (5) is

H ¼ 2�vF

@
S � u; where (8a)

S � @

2
ð�xâd þ ��yâs þ ��zânÞ; and (8b)

u � ðp � âdÞâd þ ðp � âsÞâs þ ð�=vFÞân: (8c)

The operator S defined by (8b) we term ‘‘lattice spin’’ to
distinguish it from both the dimensionless pseudospin and
the usual electron spin. One can easily verify that
½H ; ðLþ SÞ � ân� ¼ 0 for any value of �. Thus neither
the lattice spin nor the orbital angular momentum is
separately a constant of the motion, but the projection of

the total angular momentum J � Lþ S onto the plane-
normal axis (the z axis for P or D coordinates) is a
conserved quantity. It is not possible to confuse S with
an orbital angular momentum, as its eigenvalues have half-
integer magnitude in units of @.
Since earlier work asserts that the pseudospin is not

associated with an angular momentum [3,13], it is worth
exploring why we are led to a different result. In a strictly
2D system angular momentum is defined only in a limited
sense. There is only one generator corresponding to
(commuting) rotations about the direction normal to the
plane [13], which is inconsistent with a 3þ 1 dimensional
spin. By confining the electrons, the graphene sheet pro-
duces an electronic Hamiltonian H / S � u which lacks
the full 3D rotational symmetry of the vacuum. However,
the (scalar) Hamiltonian is invariant under rotations of the
system relative to the three coordinate axes, and the gen-
erators of these rotations, i.e., the angular momentum
operators, are still well defined. And unlike two-level
systems that can be reduced to the spin-1=2 problem by
analogy only, the honeycomb structure produces a spin
variable specified in relation to a laboratory coordinate
system. In other words, the direction of u, like that of a
magnetic field B, can be related to ‘‘east,’’ where no such
relation appears in, say, the isospin problem. Since the
operator Rðn;�Þ ¼ expð�i�S � n̂=@Þ generates a rotation
of the observable S by an angle � about the n̂ � n=jnj
axis, where n̂ is a direction in real space, S must be a real
angular momentum [14].
The analogy between the vector u and a magnetic field

B is helpful for understanding the close relationship be-
tween energy and angular momentum that follows from the
� operator’s coverage of both qubits. We compare the time
evolution operator U ¼ expð�iH t=@Þ with the rotation
operator Rðu;�Þ. For the honeycomb Hamiltonian (8a)
these expressions are identical; time evolving the state is
equivalent to rotating it about the û axis at a rate d�=dt ¼
ðEþ � E�Þ=@. The energies E	 correspond to the two

eigenvalues of the Hamiltonian H ,

E	 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
Fðp2

x þ p2
yÞ þm02v4

F

q
; (9)

where we have defined the band index	 ¼ �1. An equiva-
lent relationship between time evolution and rotations
appears when a magnetic dipole is placed in a magnetic
field B, where it is called Larmor precession. The time
evolution of the lattice spin operator is given by [14]

dS

dt
¼ 2�vF

@
u� S; (10)

which is exactly the equation of motion of a magnetic
dipole in a magnetic field, with the substitution
2�vFu=@ ! ��B (here � is the gyromagnetic ratio).
Thus the mixing between helicity eigenstates produced
by a mass term in the 2þ 1 dimensional Dirac
Hamiltonian is formally identical to the mixing between
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spin-up and spin-down states produced by perpendicular
magnetic field B?. In the general case of u not parallel to
S, Eq. (10) shows that the components of S perpendicular
and parallel to the plane interconvert as a function of time.

Relating pseudospin to angular momentum provides an
intuitive explanation, the existence of which has long been
suspected [15], for some properties of graphene and related
materials [14]. For instance, in metallic nanotubes the
backscattering of electrons is suppressed if the scattering
potential has a range that is long compared to a lattice
constant [15,16]. Since such a potential will treat A and B
sites identically, it is a scalar with respect to the lattice spin,
and thus cannot create the lattice spin flip required to
reverse the electron motion. Conservation of pseudospin
or lattice spin also provides a way to understand Klein
tunneling in graphene [11], and emphasizes the equiva-
lence between the condensed matter and particle physics
systems.

As another example, interpreting the pseudospin as con-
nected to a real angular momentum gives a satisfying
picture of photon-mediated electron-hole pair production
(or recombination) in graphene. In this process an electron
with pseudospin parallel to its momentum transitions be-
tween the negative energy valence band and the positive
energy conduction band, absorbing (or emitting) a photon
and flipping its pseudospin [17,18]. Both bands are derived
from atomic 2Pz orbitals, and the electron spin does not
flip, so the usual sources do not contribute to the photon’s
angular momentum. A full description [19] of this process
based on the Hamiltonian (6b) and the substitution
p ! p� qA=c (with the quantized vector potential A
describing the photon) shows that the photon’s polarization
couples the initial and final pseudospin states. As the
photon’s vector polarization is associated with its spin @,
the transition matrix element requires that the pseudospin
be associated with an angular momentum @=2.

Spin states have been previously associated with specific
types of sites in a lattice within the ‘‘staggered’’ formula-
tion of lattice quantum chromodynamics [20]. However,
the hypercubic lattice chosen there is a convenient frame-
work for discretizing the Dirac equation, not the basis of a
more fundamental model from which the Dirac equation
emerges naturally. The hypercubic lattice cannot be viewed
as a discretized space through which particles move, since
necessary phase tuning in the lattice Hamiltonian [20,21]
ruins its hopping interpretation for D> 1. Furthermore,
the number of sublattices must be fixed artificially using
foreknowledge of the Dirac equation. These differences are
not solely aesthetic; unlike the unphysical Hamiltonian
contrived for the hypercubic lattice, the honeycomb
Hamiltonian can be studied in optical lattices [22] and
natural materials such as graphene [4,17,18].

By generating an internal quantum number that reflects
an energy scale much larger than the host particle’s mass
[2], the graphene example invites connection to the

intrinsic spin carried by the quarks and leptons. However,
it is not obvious that a lattice can be found that naturally
produces the 3þ 1 dimensional Dirac equation [23,24], let
alone the chiral properties of the full standard model
[25,26]. Thus there are two possibilities, depending on
whether these spins have related origins. Either intrinsic
spin is also the low-energy signature of nontrivial quan-
tized space, or lattice spin represents a second, experimen-
tally accessible type of quantum mechanical angular
momentum with no classical analogue.
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