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We perform numerical studies to determine if the fractional quantum Hall state observed at a filling

factor of � ¼ 5=2 is the Moore-Read wave function or its particle-hole conjugate, the so-called anti-

Pfaffian. Using a truncated Hilbert space approach we find that, for realistic interactions, including

Landau-level mixing, the ground state remains fully polarized and the anti-Pfaffian is strongly favored.
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Over the last 20 years one of the most intriguing puzzles
in condensedmatter physics has been the nature of an ‘‘even
denominator’’ quantum Hall state observed [1] at a filling
factor of � ¼ 5=2. Shortly after its discovery it was shown
[2] that the 5=2 plateau disappears when a sufficiently
strong in-plane magnetic field is applied to the 2D electron
layer. This observation was widely assumed to indicate a
spin-singlet (or partially polarized) ground state. However,
numerical results by Morf [3] showed that in a relatively
large finite size system, the polarized state is preferred over
spin-singlets even in the absence of the Zeeman gap. There
is now agreement among numerical calculations [3–5],
using a variety of techniques and in different geometries,
that the polarized ground state is adiabatically connected to
a gapped phase, generally believed to be the Moore-Read
[6] Pfaffian (Pf) state, but lies very close to a quantumphase
transition to a compressible phase so that small changes in
details, such as tilting the magnetic field, can push the
system across the phase boundary as had been observed
experimentally. Despite this convergence of views there
remains a serious complication in comparing the Pfaffian
state to the ground states found in numerical studies: It was
recently realized [7] that the particle-hole conjugate of the
Moore-Read Pfaffian state, called the anti-Pfaffian (APf), is
an equally valid candidate for systems which obey particle-
hole symmetry, and no prior numerical study would have
had the ability to distinguish between these two possibilities
[8]. On the other hand, the experiments break particle-hole
symmetry and so the two candidates are inequivalent in
experiments and,most likely, only one is realized.While the
Pfaffian and the anti-Pfaffian share many important prop-
erties, including non-Abelian statistics and their usefulness
for quantum information processing [9], they represent
different topological phases of matter. For example, they
have different edge physics [7]. Determiningwhich of these
two states is actually realized in the physical system is now a
rather crucial objective. This is the aim of the current Letter.

In all previous numerical studies, calculations were
performed in a Hilbert space restricted to a single
Landau level (LL). Indeed, it is precisely this restriction

that allows numerical calculations in systems of relatively
large sizes (up to 22 electrons [5]). However, if the
interparticle interaction is a two-body interaction, such
a restriction enforces a symmetry between particles and
holes that is absent in the actual experiments, and this
symmetry is broken once LL mixing is restored. While
for most studies mixing makes only quantitative (albeit
important) corrections, in the case of 5=2 it is crucial
since it is the only factor that selects between Pfaffian
and anti-Pfaffian. Without consideration of LL mixing,
the system is fine-tuned to a critical point between these
phases [10]. Furthermore, single LL projection can only
ever be quantitatively accurate to the extent that the
Coulomb energy Ec ¼ e2=�‘0 is much smaller than the
cyclotron energy @!c. Unfortunately, in quantum Hall
experiments this is never so. In fact Ec=@!c * 1 in all
published experiments on 5=2. In this Letter we set
Ec=@!c ¼ 1:38 as in Ref. [11].
The challenge of attacking this problem numerically is

that without the projection to a single LL, the Hilbert
space, even for a small system, is infinite. One approach
to addressing this problem is to integrate out LL mixing
terms perturbatively in Ec=@!c, leaving an effective single
LL theory. This approach has recently been implemented
to lowest order in Ref. [12]. The single LL theory has been
obtained, and it was tentatively concluded that at lowest
order the LL mixing terms most likely favor anti-Pfaffian
over Pfaffian. While such an approach is well controlled, it
also has obvious severe limitations: it is a perturbative
expansion in a parameter which in the experiment is of
order one. In principle one could attempt to continue the
expansion to higher orders hoping that the series converges
quickly. However, at higher orders one generates retarded
interaction terms which then makes the resulting single
LL analysis very difficult.
An alternate, seminumerical, organization of a perturba-

tive expansion in LL mixing terms was developed in
Ref. [13]. We attempted a similar approach, hoping that
terms of successively higher orders in Ec=@!c would
become rapidly less important. However, for Ec=@!c*1
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corresponding to the experiments, we found that one would
have to carry out this expansion to a higher order than
feasible in order to obtain convergence. We have, there-
fore, resorted to a different method of analysis.

The approach we take is nonperturbative and is similar
in spirit to that of Ref. [14]. We use a truncated Hilbert
space method by keeping a limited number of LLs and
allowing only a certain number of particle or hole excita-
tions out of the valence LL, and performing exact diago-
nalizations on this restricted Hilbert space. One may view
such an approach as variational in character, which can
successively be improved by further expanding the Hilbert
space. We note that matrix elements connecting the va-
lence LL to increasingly high LLs drop very rapidly, so
excluding high LLs is not expected to create substantial
errors (see for example [13]).

Even given the Hilbert space truncation, it is still chal-
lenging to establish meaningful results from the limited
size system. As such, our argument will proceed in three
steps. (1) We show that the valence LL is polarized. This
result was first established without LL mixing in Ref. [3],
and is reexamined here for completeness as well as for
ascertaining that LL mixing does not change this conclu-
sion. This then allows us to concentrate on systems with a
polarized valence LL. (2) We establish that excitations of
electrons with opposite spin from that of the valence LL do
not substantially effect the crucial physics. This allows us
to further reduce the Hilbert space dimension considerably.
(3) Finally, using our truncation method we can mean-
ingfully address adequate system sizes and accurately
determine the nature of the ground state.

We perform our calculations on the torus geometry at
� ¼ 5=2 where the Pfaffian and anti-Pfaffian compete with
each other directly (as compared to the sphere where, for a
particular number of particles, the Pfaffian and anti-
Pfaffian do not occur at the same flux). Unless otherwise
stated wewill use a hexagonal unit cell. Following Haldane
[15], we use two-dimensional conserved crystal momen-
tum to classify the states. We consider two different classes
of experimental samples where � ¼ 5=2 has been ob-
served. The first class, typical of earlier experiments
[1,2], includes single heterointerfaces. In the current
work we will focus on samples of this type using a Fang-
Howard layer profile [16], with a layer width of w ¼ 0:65
magnetic lengths [11]. The second class of samples is the
somewhat wider (roughly 30 nm) symmetric quantum well
(QW) typical of modern high-density ultrahigh mobility
experiments [17]. In this case, the lowest Landau level
(LLL) of the first excited subband may lie below the 2 #
LL of the lowest subband and hence should not be ignored
[18]. We will return to the QW case before concluding.

Some of the Hilbert spaces which we examine are listed
in Table I. The simplest of the Hilbert spaces are H p;N

which describe N electrons filling half of the 1st spin
down LL (where all other LLs are either completely filled
or completely empty). This type of space, where all of the

degrees of freedom are within one spin polarized LL, is
typically the space used for study of the quantum Hall
effect. Indeed, the trial wave functions we are interested
in comparing to, the Pfaffian and the anti-Pfaffian, are
completely contained within this space. It is useful to
define a normalized projection operator

P̂ p;N jc i ¼ Pp;N jc i=jhc jPp;N jc ij1=2 (1)

TABLE I. Hilbert Spaces. N� is the flux and N ¼ ð5=2ÞN� is
the total number of electrons. The next columns are the number
of electrons allowed in each LL, respectively, ( labeled with their
spin). Entries with a slash through them are either empty or filled
and frozen. Higher LLs are assumed empty. The dimensions of
crystal momentum reduced Hilbert spaces, rounded to the near-
est power of 10, are listed under ‘‘d.’’ In (b) the LLL up spins are
frozen and other up spin LLs are empty. Columns 8 and 9 give
the squared overlaps of the projected ground state with the
Pfaffian and the anti-Pfaffian, respectively. The overlap between
them is given in the last column. With sufficient LL mixing (i.e.,
any transitions allowed to LL2) in all cases the anti-Pfaffian is
favored. All overlaps increase as V1 is increased slightly (see
Figs. 1 and 2).

(a) N� N 0 # þ0 " 1 # þ1 " 2 # þ2 " 3 # þ3 " d

H v;6 12 30 24 6 0 0 6:7e2
H v;8 16 40 32 8 0 0 2:6e4
H v;10 20 50 40 10 0 0 1:2e6
H s;1 12 30 22–24 6–8 0 0 7:6e4
H s;2 12 30 23–24 5–7 0–1 0 2:5e4
H s;3 12 30 22–24 5–8 0–1 0 1:1e6
H s;4 12 30 22–24 4–8 0–2 0 6:0e6
H s;11 16 40 31–32 7–9 0–1 0 4:5e5
H s;12 16 40 30–32 7–10 0–1 0 3:3e7

(b) N� N 0 # 1 # 2 # 3 # d Pf APf hPjAi2
H p;6 12 30 12 6 0 0 1:4e1 .90 .90 .67

H p;8 16 40 12 8 0 0 1:0e2 .53 .53 .016

H p;10 20 50 12 10 0 0 9:2e2 .71 .71 .29

H p;12 24 60 12 12 0 0 9:4e3 .56 .56 .059

H r;1 12 30 10–12 6–8 0 0 6:0e2 .94 .83 .67

H r;2 12 30 11–12 5–7 0–1 0 2:1e3 .79 .87 .67

H r;3 12 30 10–12 5–8 0–1 0 1:1e4 .80 .89 .67

H r;4 12 30 10–12 4–8 0–2 0 7:6e4 .83 .89 .67

H r;5 12 30 9–12 3–9 0–3 0 1:1e6 .82 .89 .67

H r;6 12 30 8–12 2–10 0–4 0 7:1e6 .82 .89 .67

H r;7 12 30 10–12 4–8 0–2 0–1 8:7e5 .81 .87 .67

H r;8 12 30 10–12 4–8 0–1 0–2 8:7e5 .79 .86 .67

H r;9 12 30 9–13 3–9 0–2 0–1 3:7e6 .82 .87 .67

H r;10 16 40 14–16 8–10 0 0 9:1e3 .63 .33 .016

H r;11 16 40 14–15 7–9 0–1 0 2:9e4 .36 .52 .016

H r;12 16 40 14–16 7–10 0–1 0 2:1e5 .34 .51 .016

H r;13 16 40 14–16 6–10 0–2 0 1:8e6 .37 .56 .016

H r;14 16 40 14–16 6–10 0–1 0–1 3:9e6 .36 .53 .016

H r;15 20 50 18–20 10–12 0 0 1:4e5 .40 .00 .29

H r;16 20 50 18–20 9–12 0–1 0 3:8e6 .01 .24 .29
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where Pp;N is the usual projection to the Hilbert space

H p;N . Thus, P̂p;N jc i is always a normalized wave

function within the space H p;N . We can further define

the projected square overlap between two states c 1 and
c 2 with the same total number of electrons N as

jhc 1jP̂p;N P̂p;N jc 2ij2 where N ¼ NmodN� ¼ N=5.

We start by examining spin polarization of the valence
LL. First we restrict the Hilbert space to a single LL
(H v;i for i ¼ 6–10) and, before doing exact diagonaliza-

tion, we integrate out inter-LL transitions approximately
at the RPA level [19], which modifies the interelectron
interactions. We find, in agreement with Ref. [3], that
even in the absence of Zeeman energy, the ground state
of the valence LL is fully polarized and gapped for
N ¼ 6–10 electrons. Furthermore the signature crystal
momentum of the Pfaffian state (and the anti-Pfaffian) for
both even and odd electrons is matched by the exact
ground state.

We reconsider the same problem including LL mixing
with the truncated Hilbert space technique. Performing
diagonalizations in Hilbert spaces H s;i we now allow

complete freedom within the valence LL, and we also
allow a few holes in the 0th LL and a few electrons in
the 2nd LL. We again find that the ground state of the
valence LL is always fully polarized even in the absence of
Zeeman splitting and the ground state momentum matches
that of the Pfaffian and anti-Pfaffian.

Concluding that the valence LL is polarized, we now
turn to study the effect of the excitation of the spin up (the
minority spin) electrons. Let us consider the ground states
H r;i, which are exactly analogous to H s;i except that the

minority spin species has now been frozen although LL
transitions for the majority spin are still allowed. We find,
rather remarkably, that the projected squared overlap be-
tween the ground state inH r;i and the ground state inH s;i

is 0.9893, 0.9984, and 0.9986 for i ¼ 2, 3, and 4. This
surprisingly shows that as the Hilbert space is expanded
(for fixed number of electrons), the minority spin species
becomes less important. For i ¼ 11, 12 we obtain 0.9864
and 0.9966 which shows that even for larger systems,
neglect of spin-reversed excitations remains extremely
good. Considering the large Hilbert space and its moderate
size even after projection toH p;8 (34 after all symmetries

are removed) this result is highly significant. What this
means is that, although the ground state wave function is
dressed with virtual excitations to the other LLs, when it
is projected back into a single LL, the wave function is
nearly independent of whether transitions of the minority
spin species are allowed. We note that this insensitivity to
the presence of the minority spins seems to hold indepen-
dent of our truncation scheme and details of the
Hamiltonian, presumably, so long as we have a polarized
and gapped ground state. The fraction of the wave function
that survives projection is clearly reduced when the Hilbert
space is expanded, but this is unimportant in determining
the phase represented by the wave function.

The above result now allows us to completely freeze the
minority spin species and study larger systems. We exam-
ined a number of different truncation combinations, some
of which are shown in Table I(b). We find that as the
Hilbert space is expanded, the spectrum rapidly converges.
Indicating that only a few excitations out of the valence LL
need be considered for capturing the essential physics.
We now turn to the main results of our work. For

increasing system sizes, we consider the projected overlap
of our exact diagonalizations with both the Pfaffian and the
anti-Pfaffian [see Table I(b)]. Note that for certain finite
sized systems, there can be a substantial overlap between
the Pfaffian and anti-Pfaffian [see Table I(b)], so that if the
overlap of the ground state with one is large, the overlap
with the other cannot be too small. Examining Table I(b), it
is clear that the anti-Pfaffian is favored over the Pfaffian,
particularly for the larger Hilbert spaces. We find that the
anti-Pfaffian always has higher overlap except if transitions
to LL2 are artificially forbidden (H r;i for i ¼ 1, 11, 14).
As we look at larger systems, the contrast between Pfaffian
and anti-Pfaffian only improves.
Examining the data more carefully makes the case even

more compelling. For finite sized systems, the realistic
Hamiltonian is clearly on the edge of a phase transition,
in agreement with experiment [2] and prior numerical
studies [3–5]. However, barring a level crossing transition,
which does not occur here, phase boundaries are broadened
in finite sized systems. In order to focus on the gapped
phase, we add a small �V1 (Haldane pseudopotential)
interaction to the Hamiltonian. We define Vm to be the

FIG. 1 (color online). The overlaps of the projected ground
state with the Moore-Read Pfaffian and the anti-Pfaffian for
H r;15, ðN�;NÞ ¼ ð20; 50Þ. Varying V1 slightly, the projected

ground state obtains a large overlap with the APf, while the
overlap with the Pf remains relatively small. A substantial part of
the Pf overlap appears to be caused by the nonorthogonality of Pf
with APf. Further increasing V1, the system crosses over to a
composite fermion Fermi-liquid [4], which in this case has the
same crystal momentum. The top curve (also in Fig. 2 for the ZB
case) is the projection of the ground state to the two-dimensional
subspace spanned by the Pf and APf.
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energy of a pair of particles in a state of ‘‘relative angular
momentum’’ m irrespective of what LL they occupy [15].
Defined this way, such a term does not break particle-hole
symmetry. In Fig. 1, in a system with a very large Hilbert
space, we see that adding only a small �V1 greatly in-
creases the projected overlap of the ground state with the
anti-Pfaffian trial state, but to a much lesser degree with
the Pfaffian. Since for this size system, the overlap of the
Pfaffian and anti-Pfaffian is about 29%, much of the in-
crease for the Pfaffian appears to be caused by this effect.

It is useful to examine also the torus with square unit cell
geometry where additional information may be extracted
(See Fig. 2). In contrast to the hexagonal unit cell, where
there is a single threefold degenerate ground state, for the
square unit cell we find two low energy ‘‘ground’’ states at
two different points in the Brillouin zone: one at the zone
corner (ZC) and a doubly degenerate ground state at the
zone boundary (ZB), as expected for either the Pfaffian or
anti-Pfaffian. In this case, however, the overlaps between
the Pfaffian and anti-Pfaffian trial wave functions are 0.8%
for ZC and 12% for ZB. Here, the contrast between
Pfaffian and anti-Pfaffian overlaps is even more apparent:
examining the ZC we find a region of �V1 where the
overlap with the anti-Pfaffian is very high, but the overlap
with the Pfaffian is near zero. At the peaks in both figures,
the anti-Pfaffian completely dominates while past the
peaks both are present with the anti-Pfaffian remaining
dominant. However, such an admixture of Pf and APf
will not occur in a thermodynamic system since they
represent distinct phases.

We return now to the QW type samples. In the high-
density (very high mobility) cases, the LLL of the first
excited subband state is about 30% of @!c above the n ¼ 1

LL. We find that in a 3-LL model the mixing is somewhat
suppressed and the Pfaffian is preferred. However, adding
the fourth (n ¼ 2 lowest subband) the LL changes it to the
anti-Pfaffian. We have tested convergence when more LLs
are added. In particular, adding the fifth (n ¼ 1, first ex-
cited subband) LL in a small, N ¼ 30 and N� ¼ 12,

system we have found that overlap changes are less than
one quarter of a percent. While the sizes we can access in
this case are more limited, the case for the anti-Pfaffian
remains relatively strong.
To conclude, we find the anti-Pfaffian is strongly pre-

ferred. The large overlaps with the Pfaffian appear to be a
finite size effect at least partially due to the relatively large
overlap of the Pfaffian with the anti-Pfaffian.
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