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The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid’s

viscosity. The concept of the atomic-level stresses allows the macroscopic stress-stress correlation

function in the equation to be expressed in terms of the space-time correlations among the atomic-level

stresses. Molecular dynamics studies show surprisingly long spatial extension of stress-stress correlations

and also longitudinal and transverse waves propagating in liquids over ranges which could exceed the

system size. The results reveal that the range of propagation of shear waves corresponds to the range of

distances relevant for viscosity. Thus our results show that viscosity is a fundamentally nonlocal quantity.

We also show that the periodic boundary conditions play a nontrivial role in molecular dynamics

simulations, effectively masking the long-range nature of viscosity.
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Computer simulations of supercooled liquids revealed a
number of phenomena that happen at a microscopic level.
These include atomic caging, stringlike atomic motion,
dynamically heterogeneous behavior, and multiple subtle
features related to the sampling of potential energy land-
scape [1]. The nature of the relations between these micro-
scopic phenomena and macroscopic properties, such as
viscosity, is not completely understood. Here we address
the connection between the local atomic dynamics and
macroscopic viscosity by using the concept of the
atomic-level stresses [2–8].

One common approach to viscosity calculations in mo-
lecular dynamics (MD) simulations is based on the Green-
Kubo expression [9–11]:
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where h. . .i indicates averaging over the initial time t0 of
the autocorrelation function for off-diagonal components
of the macroscopic stress tensor �ab. The total volume of
the system is V, while kb and T are the Boltzmann constant
and temperature, respectively. The macroscopic stress in
(1) is a sum of contributions from individual atoms:
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where the summation over i is over the all atoms in the
system, while the summation over j is over the atoms with
which atom i interacts via pair potential �. In (2) we
neglected the kinetic energy contribution.

Contributions from individual atoms sabi are closely
related to the local atomic stresses �ab

i ¼ sabi =Vi, where
Vi is the atomic volume of the atom i [6–8]. Here, for

convenience, we will refer to the parameters sabi as the
local atomic stress elements.
It follows from (1) and (2) that for a single component

system

ðV=�0Þh�abðt0Þ�abðt0 þ tÞi
¼ hsabi ðt0Þsabi ðt0 þ tÞi þ

�
sabi ðt0Þ

�X
j�i

sabj ðt0 þ tÞ
��
; (3)

where �0 is the atomic number density. The averaging h. . .i
in (3) and hereafter is over the all atoms i and over the
initial time t0. The first term on the right is the autocorre-
lation function for the atomic-level stress elements. The
second term contains correlations between atomic-level
stress elements on different atoms.
Previously, it was demonstrated that correlation function

(3) at zero time extends over large ranges and that the range
of distances relevant to viscosity is large [3–5]. Here we
demonstrate that propagating stress waves could be ob-
served through this approach and that stress waves play a
very important role in formations of viscosity, making it a
very nonlocal quantity. We also reveal the nontrivial role of
periodic boundary conditions.
In our approach, we define a correlation function (sscf)

between the stress element at atom i with the stress ele-
ments at a subset of atoms j, which are separated from the
atom i by r� �r=2, as

Fðr; tÞ�r �
�
sabi ðt0Þ

� X
j2J�rði;r;t0Þ

sabj ðt0 þ tÞ
��
; (4)

where J�rði; r; t0Þ is the set of all atoms that were within the
shell of radius r and thickness�r from the position of atom
i at time t0. The number of such atoms within a thin shell of
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radius r is proportional to r2�r. The averaging goes over i
and t0. Note that Fðr ¼ 0; tÞ is the autocorrelation function.

Finally, we introduce the concept of microscopic
viscosity:

�ðRmax; tmaxÞ � �o

kbT

Xr¼Rmax

r¼0

Z t¼tmax

t¼0
Fðr; tÞ�rdt: (5)

This quantity should extrapolate to the macroscopic
viscosity in the limits of Rmax ! 1 and t ! 1 and thus
address the ranges of correlations in space and time that
affect viscosity.

To examine the behavior of the microscopic viscosity
and its convergence to the macroscopic value, MD simu-
lations were performed on a single component system of
particles that is supposed to mimic liquid iron. The number
density of the system corresponded to a bcc lattice with

lattice spacing a ¼ 2:943 �A. The particles interact through
a short-range pairwise potential. The potential has a mini-
mum at 2.61 Å with the depth � 2800 K, and it is zero
beyond 3.44 Å. This potential is more harmonic than the
Lennard-Jones potential, but these potentials share very
similar thermal behaviors of atomic-level stresses at high
temperatures [8]. Thus we surmise that results obtained by
using this potential are rather general. The melting tem-
perature of this system is around 2400 K, while the glass
transition temperature is around 1000 K [12].

In calculating (3) for every atom i, every atom j should
be counted only once. For instance, if the simulations are
performed on a cubic system (L� L� L) with periodic
boundary conditions and if the radius of the shell r in (4)

belongs to the interval ðL=2Þ< r <
ffiffiffi
3

p ðL=2Þ, according to
(3), we should count only the atoms in parts of the shell
under the ‘‘corners’’ of the cube. Thus, we should count
every atom j only once without introducing extra images of
the system. Consequently, sscf (4) approaches zero as r

approaches
ffiffiffi
3

p ðL=2Þ since the number of atoms j that we
should count goes to zero. Thus, size effects in sscf may
appear if it does not decay quickly with an increase of r.

In order to assess the size effects, we studied cubic
systems containing 1458, 5488, and 43 904 particles
(small, intermediate, and large, respectively) with periodic
boundary conditions. The half lengths of their sizes, (L=2),

are �13:25 �A, �20:60 �A, and �41:21 �A, respectively.
In order to evaluate macroscopic viscosity we integrated

total shear stress correlation functions according to (1) for
the systems of different sizes up to the time tmax ¼
2000 ðfsÞ, where stress correlations decay to zero. Results
from different stress components and from several runs
were used to find the average values and the errors.
The obtained values of the macroscopic viscosities
for different systems at 2000 (K) are �ð13:25 �AÞ¼
0:01084�0:00012 ½kg=ðs �mÞ	, �ð20:60 �AÞ¼0:01055�
0:00017½kg=ðs �mÞ	, and �ð41:21 �AÞ ¼ 0:010 97�
0:001 15½kg=ðs �mÞ	. Thus the values for macroscopic vis-
cosities for all systems are very similar. Our results are

consistent with other reports [9,11] suggesting the absence
of significant size effects in viscosity calculations. The
similarities in values of macroscopic viscosities obtained
on systems of different sizes may appear to suggest that
viscosity is a relatively local quantity. However, some
previous results indicate that viscosity is, in fact, very
nonlocal [3,13]. Here we further address this issue.
Figure 1 shows the 2D plots of sscf (4) at temperature

2000 K for the small and large systems. There were six
independent runs to produce the data for the system con-
taining 43 904 particles. In every run the averaging was
done over every atom in 230 initial structures separated
from each other by 100 fs. This corresponds to averaging
over more than 60� 106 central atoms. Averaging over
different stress components was also employed. The value
of the stress autocorrelation function at time zero is
5:5 ðeV2Þ. Overall, the value of the signal that we observe
at large r is rather small compare to the size of fluctuations.
For the large system we stopped calculations at 30 Å
because calculations consume significant computer time
and memory for large distances. However, for the smaller

FIG. 1 (color). The stress-stress correlation function Fðr; tÞ
[Eq. (4)] at 2000 K for ðL=2Þ ¼ 13:25 �A (upper panel) and
ðL=2Þ ¼ 41:21 �A (lower panel), �r ¼ 0:2 �A. The color corre-
sponds to the amplitude of sscf function.
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systems calculations are less time-consuming, and we
performed calculations up to the distances where all parti-
cles were included.

Figure 1 demonstrates that spatial ranges of stress cor-
relations extend beyond 10 interatomic distances in agree-
ment with Ref. [13]. The interchanging horizontal regions
of positive and negative intensity should be related to the
oscillatory behavior of the pair density function. Two
bright lines with slopes corresponding to � 6 km=s and
� 3 km=s should be caused by longitudinal and transverse
stress waves. The stress waves propagate in the large
system beyond 30 Å but disappear in the small system
around 20 Å. Thus periodic boundary conditions affect
propagation of stress waves. It follows from Fig. 1 that
every atom in the system is a source of stress waves at
every instant. Since stress waves propagate over significant
distances, it follows that stress waves from different atoms
can propagate through each other. It also means that the
stress on every atom is affected by all the stress waves that
pass or passed through the atom.

Further we address the connection between the sscf and
viscosity. Figure 2 shows how the microscopic viscosity
�ðRmax; tmaxÞ depends on Rmax for a few different integral
cutoffs tmax for the systems of three different sizes.
Figures 2(a)–2(e) present results for 2000 (K) while
Fig. 2(f) for 10 000 (K). The value of the microscopic
viscosity at Rmax ¼ 0 is associated with the stress autocor-
relation function (j ¼ i). Then the value increases with the
inclusion of the first coordination shell. Figures 2(a)–2(e)
show the evolution of the sscf with tmax. It follows from the
figure that contributions to viscosity from autocorrelation
and cross terms in (3) are comparable for all tmax. Note that
for every tmax the range of distances relevant for viscosity
corresponds to the range that shear wave propagate in that
time. Comparison with Fig. 1 reveals that, for the large
system and times less than 800 (fs), crossing of the front of
the shear stress wave has major effects on microscopic
viscosity, while changes are slow and small before and
after the wave. Longitudinal wave also does not seem to
affect microscopic viscosity.

Figures 2(c)–2(e) show explicitly that viscosity is a very
nonlocal quantity. It would be local if the size-independent
behavior presented in Figs. 2(a) and 2(b) for small cutoff
times would held for all cutoff times. However, the results
show distinct size effects on the microscopic viscosity. For
the large times, the fronts of the shear waves cannot be
crossed because of the insufficient sizes of the systems.
Thus, microscopic viscosity starts to increase at some other
distance. As the number of included atoms j approaches
the total number of atoms in the system, the microscopic
viscosity saturates to the values of the macroscopic vis-
cosities. For the large system, this corresponds to the
centers of the green bands in Figs. 2(e) and 2(f). The
widths of the green bands give the standard deviations of
the macroscopic value �.

For the small and intermediate size systems, the satu-
rated values of microscopic viscosities are very close to the
corresponding macroscopic values and to the values of the
macroscopic viscosities for the large system. By definition,
the microscopic viscosity for the largest system also should
saturate to the value of the macroscopic viscosity as all
particles become included.
The present results expose a puzzle, i.e., why macro-

scopic viscosities are similar while microscopic viscosities
show size dependence. A solution may lie in the nature of
stresses, stress waves, and periodic boundary conditions.
Consider the wave that starts from the atom i and that
would reach the atom j0 at time t in an infinite system.
Because of the periodic boundary conditions, this wave
reaches the atom j inside the box instead, as shown in
Fig. 3. Let us assume that different stress waves contribute
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FIG. 2 (color). Microscopic viscosities for the systems of
different sizes as a function of Rmax for some values of tmax.
(a)–(e) are for 2000 (K), while (f) is for 10 000 (K). The vertical
dashed lines in (a)–(c) mark the range that shear wave propagate
in that time. The blue, black, and red curves show results for the
small, intermediate, and large systems, correspondingly. The
middle of the green bands in the 2000 (fs) panels represents
the values of the macroscopic viscosities for the large system.
Their widths give the errors.
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additively to the stresses on the atoms. Then periodic
boundary conditions effectively transfer contributions of
the wave to the stresses from j0 onto j. Thus, the wave that
arrives at the atom j has the same effect on the macroscopic
stress correlation function (3) as would the wave that
would arrive at j0 in an infinite system. Thus the macro-
scopic stress correlation function and correspondingly
macroscopic viscosities obtained on any finite size system
may appear to be similar to the results that could be
obtained on an infinite size system.

Thus, in our view, the long-range nature of viscosity is
obscured by the nontrivial role that periodic boundary
conditions play in MD simulations. The apparent lack of
size effect in the macroscopic viscosity does not indicate
the local nature of viscosity, and in reality viscosity is a
highly nonlocal quantity.

In view of our conclusion on the nonlocal nature of
viscosity, it is interesting to estimate the range of distances
which are relevant for viscosity. This estimate could be
obtained if the results for the microscopic as well as macro-
scopic viscosities on systems of different sizes become the
same. Figure 2(f) shows the results at 10 000 K. Here the
results for the intermediate and large systems agree, not
only in the saturation value but in the entire dependence on
Rmax. Only the small system shows the size effect due to
the boundaries. Thus at this temperature both the macro-
scopic viscosity shown by the green stripe and the micro-
scopic viscosities become independent of size for systems
with L larger than 20 Å, a surprisingly long range for such
a high temperature.

Thus, one can expect that in the liquid at low tempera-
ture the range of distances relevant for viscosity is even
longer. Such a long correlation length and the nonlocal
nature of viscosity is indeed consistent with the literature
[2–5,9–11,13–19]. Here, however, we revealed a number
of details which, in our view, were not discussed previously
and are important.

In summary, we studied the microscopic nature of vis-
cosity in a liquid. Our results demonstrate that viscosity is a
fundamentally nonlocal quantity and illustrate how the
propagation of stress waves is related to formation of
viscosity. Our results also show that periodic boundary
conditions play a rather nontrivial role in MD simulations.
The results raise multiple questions concerning the nature
of viscosity and stress wave propagation in liquids.
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