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The preparation of completely nonpolarized light is seemingly easy; an everyday example is sunlight. The

task ismuchmore difficult if light has to be in a pure quantum state, as required bymost quantum-technology

applications. The pure quantum states of light obtained so far are either polarized or, in rare cases, manifest

hidden polarization; even if their intensities are invariant to polarization transformations, higher-order

moments are not.Weexperimentally demonstrate thepreparationof themacroscopic singletBell state,which

is pure, is completely nonpolarized, and has no polarization noise. Simultaneous fluctuation suppression in

three Stokes observables below the shot-noise limit is demonstrated, opening perspectives for noiseless

polarization measurements. The state is shown to be invariant to polarization transformations. This robust

highly entangled isotropic state promises to fuel important applications in photonic quantum technologies.
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The polarization properties of light are at the focus of
interest in quantum optics and quantum information. There
are many reasons, such as the relative simplicity of polar-
ization interferometry and detection schemes [1], the simi-
larity between the polarization properties of light and the
properties of atoms or atomic ensembles [2], and several
others. The description of polarization in quantum optics is

based on the Stokes operators Ŝ0, Ŝ1, Ŝ2, and Ŝ3 [1].
Quantum noise in polarization observables is given by
the uncertainty relations

�Si�Sj � jhSkij; i � j � k ¼ 1; 2; 3; (1)

and it can be suppressed in Si at the expense of its increase
in Sj (polarization squeezing [3,4]). In the particular case

where hSki ¼ 0, there are no fundamental restrictions for
suppressing noise in Si and Sj simultaneously. Moreover,

one can imagine a situation where the mean values of all
three Stokes operators, usually called the Stokes para-

meters, are equal to zero: hŜ1i ¼ hŜ2i ¼ hŜ3i ¼ 0. This
case can be realized for entangled squeezed-vacuum
states [5–7].

A macroscopic, i.e., containing many photons, squeezed
vacuum has attracted much attention recently as it is
among very few ‘‘available’’ macroscopic quantum sys-
tems with essentially nonclassical properties [8]. In par-
ticular, it can be probably considered as a candidate for
macroscopic Bell tests [9,10]. Besides, the macroscopic
squeezed vacuum has important applications such as gravi-
tational wave detection [11], quantum memory [12], super-
resolution [13], quantum efficiency absolute measurement
[14], etc. An entangled squeezed vacuum is a particular
case of squeezed vacuum involving at least four radiation
modes, for instance, two polarization ones and two fre-
quency ones. Its low-intensity analogues are two-photon

Bell states, and the preparation relies on the same experi-
mental scheme [15,16].
The preparation scheme involves two collinear nonde-

generate optical parametric amplifiers pumped by coherent
beams. The corresponding Hamiltonian takes one of the
four possible forms

Ĥc� ¼ i@Gðay1by2 � by1a
y
2 Þ þ H:c:;

Ĥ’� ¼ i@Gðay1ay2 � by1b
y
2 Þ þ H:c:;

(2)

where a, ay, b, and by are photon annihilation and creation
operators in the horizontal and vertical polarization modes,
respectively, the subscripts 1 and 2 denote two frequency
modes !1 and !2, respectively, and the parameter G de-
pends on the quadratic susceptibility and the pump power.
The states at the output can be written exactly as

j�ð�Þ
maci ¼ e�ða

y
1
by
2
�by

1
ay
2
ÞþH:c:jvaci;

j�ð�Þ
maci ¼ e�ða

y
1
ay
2
�by

1
by
2
ÞþH:c:jvaci; (3)

where � ¼ R
Gdt is the parametric gain coefficient.

Because of their similarity to the two-photon Bell states,
they can be called macroscopic Bell states. The Fock-state
expansion of (3), with each term containing generalized
Bell states [17], immediately reveals photon-number cor-
relation between modes a1 and b2 and between modes a2
and b1 [9,18]. This leads to the suppression of fluctuations
in certain Stokes observables. However, for calculating
observables such as Stokes parameters and their variances,
it is more convenient to use the Heisenberg approach. For
instance, the Hamiltonian Hc� leads to the equations of

motion

_a1 ¼ Gby2 ; _b2 ¼ Gay1 ;

_a2 ¼ �Gby1 ; _b1 ¼ �Gay2 ;
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the dot denoting time differentiation. The solutions are

a1 ¼ a10 cosh�þ by20 sinh�;

b2 ¼ b20 cosh�þ ay10 sinh�;

a2 ¼ a20 cosh�� by10 sinh�;

b1 ¼ b10 cosh�� ay20 sinh�;

where ‘‘0’’ labels vacuum operators. The mean values and
the variances of the Stokes operators are then calculated by

averaging the operators Ŝi and ðŜi � hŜiiÞ2, respectively,
over the vacuum state. Note that the Stokes operators for
the output beam should be calculated as the sum of the

Stokes operators for the two wavelengths: Ŝi ¼ Ŝð1Þi þ Ŝð2Þi

[6,9], where ŜðjÞi is the ith Stokes operator for mode
j; i ¼ 0; 1; 2; 3; j ¼ 1; 2. This is because the dete-
ctors measuring intensities in various polarization modes
[Fig. 1(a)], even if fast enough to trace intensity fluctua-
tions, are still too slow to measure the beats caused by the
!1 �!2 difference.

For the Stokes parameters, we get

hS0i ¼ 4sinh2�; hS1i ¼ hS2i ¼ hS3i ¼ 0 (4)

for all states (3), which clearly shows that they are unpo-
larized in the first order in the intensity. It is different,
however, for higher-order moments. For the variances,

VarSi � hŜ2i i � hŜii2 � �S2i , we get the results shown in

Table I. We see that for each of the macroscopic Bell states,
variance of at least one of the Stokes operators is zero;
i.e., noise in the corresponding Stokes observable is
completely suppressed [6,7].

The macroscopic singlet state j�ð�Þ
maci is special. It fol-

lows from the structure of the Hamiltonian Ĥc� that

j�ð�Þ
maci is invariant to all polarization transformations,

similarly to the two-photon singlet Bell state. For this
reason, it was called polarization-scalar light [7]; unlike
the other three states (3), it does not reveal polarization
even in higher orders in the intensity (hidden polarization
[19–21]). At the same time, it is not a mixed state but a pure
one. Even more surprising is the fact that the macroscopic
singlet state is completely noiseless from the polarization
viewpoint. Indeed, according to Table I, it has the variances
of the Stokes observables S1;2;3 exactly equal to zero.

Moreover, one can show that higher-order moments of
these observables are zero as well. Note that this state,
predicted theoretically as early as in the 1990s [6,7], has
never been observed before.
The noise properties of the macroscopic Bell states can

be illustrated by a diagram shown in Fig. 1(c). For each
state, the colored distribution is centered around the point
hS1i; hS2i; hS3i, while the size of each distribution in
direction Si corresponds to the uncertainty �Si. For the

‘‘triplet’’ states j�ðþÞ
maci, j�ðþÞ

maci, j�ð�Þ
maci, the distributions

are disk-shaped, as the uncertainty is zero in only one

direction. For j�ð�Þ
maci, the distribution is pointlike, as all

�Si ¼ 0. Formally, these distributions can be descri-
bed by a quasiprobability function [22] introduced in
Refs. [23,24], similarly to the way distributions of optical
quadratures can be described by the Wigner function.
The degree of noise suppression for a Stokes observable

Si can be characterized by its normalized variance
VarðSiÞ=hS0i. Normalized this way, the variance turns
into the noise reduction factor (NRF) for the beams in
two orthogonal polarization modes (horizontal and vertical
for i ¼ 1, linear �45� for i ¼ 2, and right- and left-
circular for i ¼ 3). The NRF, defined as the variance of
the intensity difference for two beams normalized to their
mean intensity sum [25], is a parameter commonly used to
quantify twin-beam squeezing. The value NRF ¼ 1, often
called the shot-noise level, is realized for the case of two
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FIG. 1 (color online). (a) The experimental setup.
Orthogonally polarized squeezed vacuums are overlapped at a
polarizing beam splitter (PBS) with a relative phase ’; the
residual pump is eliminated by dichroic mirrors (DM) and an
OG570 Schott filter (OG). A dichroic plate (DP) is inserted for

the production of j�ð�Þ
maci. The measurement part includes a Glan

prism (GP), a HWP, a QWP, a lens, an aperture (A), and two
detectors. (b) The wavelength-angular spectrum of PDC, the
shaded area showing the range selected by the aperture.
(c) Macroscopic Bell states. Three colored disks show the
mean values and the uncertainties of the Stokes observables

for j�ðþÞ
maci (blue), j�ðþÞ

maci (green), and j�ð�Þ
maci (red). The yellow

point shows the state j�ð�Þ
maci, for which the means and uncer-

tainties of all Stokes observables are zero.

TABLE I. Variances of the Stokes observables for the four
states (3); n � sinh2�. Each state has fluctuations in some

Stokes observable suppressed; the j�ð�Þ
maci state has no fluctua-

tions in all Stokes observables S1;2;3.

State VarðS0Þ VarðS1Þ VarðS2Þ VarðS3Þ
j�ð�Þ

maci 8nðnþ 1Þ 0 0 0

j�ðþÞ
maci 8nðnþ 1Þ 0 8nðnþ 1Þ 8nðnþ 1Þ

j�ð�Þ
maci 8nðnþ 1Þ 8nðnþ 1Þ 0 8nðnþ 1Þ

j�ðþÞ
maci 8nðnþ 1Þ 8nðnþ 1Þ 8nðnþ 1Þ 0
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coherent beams and sets the boundary between the classi-
cal and quantum behavior. Although theoretically the NRF
can reach zero values (see Table I), it is never the case in a
real setup, because of the finite quantum efficiencies,
inevitable optical losses, and mismatch of signal and idler
mode selection [26]. If all losses are incorporated
into some effective quantum efficiency �, equal for
both detectors, the zeros in Table I turn into 4nð1� �Þ �
ð1� �ÞhS0i. Of course, losses also influence the anti-
squeezed variances of the Stokes observables, which be-
come 4nð1þ �Þ þ 8n2� � ð1þ �ÞhS0i þ �hS0i2=2. The
corresponding minimum and maximum values of the NRF
are, respectively, 1� � and 1þ �þ �hS0i=2.

In our experiment [Fig. 1(a)], we generate the macro-

scopic singlet state j�ð�Þ
maci via frequency-nondegenerate

parametric down-conversion (PDC) in two 2 mm beta
barium borate (BBO) crystals with optic axes oriented in
orthogonal (horizontal and vertical) planes placed into a
Mach-Zehnder interferometer (MZI) whose input and out-
put beam splitters are polarizing ones. The crystals are
pumped by a Nd:YAG laser third harmonic (wavelength
�p ¼ 355 nm, repetition rate 1 kHz, pulse duration 17 ps,

and energy per pulse up to 0.2 mJ). The pump at the input
of the MZI is 45� polarized and hence it contributes
equally to PDC in both crystals. After the crystals, the
pump radiation is cut off by dichroic mirrors reflecting
99.5% of the pump and transmitting 95% of the PDC
radiation. Each crystal is a traveling-wave nondegenerate
optical parametric amplifier producing a two-color bright
squeezed vacuum [26] with signal and idler wavelengths
�1 ¼ 635 nm and �2 ¼ 805 nm [Fig. 1(b)]. Both
squeezed-vacuum beams, being orthogonally polarized,
leave through the same port of the MZI. The phase ’
between the squeezed-vacuum beams can be varied by
moving one of the mirrors, placed on a piezoelectric

feed. Depending on the phase, the states j�ðþÞ
maci or j�ð�Þ

maci
are generated at the output of the MZI.

Preparation of the singlet state proceeds then along the
same line as in Ref. [16]. First, we fix the phase to be �,
which is controlled by measuring the variance of S2: Its

minimum indicates the preparation of the j�ð�Þ
maci state [see

Fig. 1(c)]. In a 45�-rotated basis, the j�ð�Þ
maci state becomes

j�ðþÞ
maci [27]. Finally, j�ðþÞ

maci is transformed into j�ð�Þ
maciwith

the help of a dichroic wave plate placed into the output
beam. The dichroic wave plate is a 170 �m thick quartz
crystal with the optic axis oriented at 45�. Its thickness is
chosen in such a way that, due to the dispersion, the
ordinary-extraordinary phase delays introduced at the
wavelengths �1 and �2 differ by exactly �. As a result,

the plate introduces a � phase between the ay1b
y
2 and by1a

y
2

terms in the Hamiltonian H c� and, correspondingly, in

the expression for j�ðþÞ
maci [see (3)]. Therefore, the plate

provides the necessary transformation from j�ðþÞ
maci to

j�ð�Þ
maci.

The registration part [Fig. 1(a), left], including a Glan
prism, a half-wave plate (HWP) and a quarter-wave plate
(QWP), and two detectors, provides a standard Stokes
measurement. With a HWP oriented at 22.5�, the differ-
ence of detectors’ output signals corresponds to S2, while
with a QWP oriented at 45�, the same measurement pro-
vides S3. Intermediate directions in the space of the Stokes
variables are accessed by continuously rotating the HWP
or QWP. Mode selection is performed by means of a lens
with the focal length 30 cm, placed at 30 cm from the
crystals, and a 1-cm aperture, placed in its focal plane. This
way we select a 1.8� angular spectrum width [Fig. 1(b)],
which automatically restricts the PDC frequency spectrum
as well. All optical elements are antireflection coated. The
radiation is focused on the detectors by lenses with focal
lengths 5 cm. The detectors are p-i-n photodiodes fol-
lowed by charge-sensitive amplifiers, and their output
pulses have a fixed shape (with the duration about 8 �s)
and the amplitudes scaling as the number of photons
registered during a single pump pulse. The electronic noise
is mostly caused by the amplification circuit and is equiva-
lent to 180 input photons. For each pump pulse, the output
pulses of the detectors are time-integrated by means of an
analog-digital card; then the data are processed to obtain
the mean values and variances of the Stokes parameters.
The shot-noise level is measured separately using attenu-
ated laser radiation. In more detail, the procedure for
measuring the NRF is described in Ref. [28]. However,
unlike in Ref. [28], in our present experiment the squeezed-
vacuum pulses contain, on the average, more than 106

photons; hence, the shot noise exceeds the electronic noise
by an order of magnitude.
Using this setup, we have studied the polarization prop-

erties of the macroscopic singlet state. We measured the
NRF for S1, S2, and S3, as well as the intermediate Stokes
observables corresponding to arbitrary orientations of
HWP and QWP [Figs. 2(a) and 2(b), respectively].
Certain points in the obtained dependences correspond to
the measurement of noise reduction in the Stokes observ-
ables S1, S2, and S3 (see the arrows on top of each figure).
We see that all three observables S1;2;3 have fluctua-

tions suppressed about 30% below the shot-noise level.
In particular, we have measured NRFðS1Þ ¼ 0:72� 0:01,
NRFðS2Þ ¼ 0:72� 0:01, and NRFðS3Þ ¼ 0:73� 0:02.
This moderate noise suppression, despite the overall
quantum efficiency or transmittivity of the setup being
� � 0:65, is mainly due to the fact that both 635 and
805 nm beams are restricted by the same angular aperture:
For proper mode matching, the apertures for different
wavelengths should differ in size [26]. Based on Eq. (5)
of Ref. [26], we estimate the resulting NRF increase as
1� ð�1=�2Þ2 � 0:38, which yields 0.73 for the NRF. This
is remarkably close to the observed value. It is worth
mentioning that, while the state produced at the output
of the preparation setup is nearly pure, the nonideal
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registration leads to its mixing with the vacuum and with
uncorrelated modes.

In addition to noise reduction, the data clearly show the
invariance of the singlet state to polarization transforma-
tions with HWP and QWP. The normalized Stokes variance
(large green open circles), as well as the intensities in the
two output channels (small red and blue squares), do not
depend on the orientations of the plates. This justifies the
term ‘‘polarization-scalar light.’’ The state is a pure one
but, at the same time, completely unpolarized. For com-
parison, we have also tested the polarization properties of

j�ðþÞ
maci, which was generated the same way as j�ð�Þ

maci but
without the dichroic phase plate. The results are shown in
Figs. 2(c) and 2(d). One can see that, although the output
intensities are independent of the polarization rotation, the
normalized variances show well-pronounced modulation,
which proves that the state has a nonzero second-order
degree of polarization [19,29]. The other two macroscopic
Bell states also reveal this hidden polarization effect [30].
In the context of this work, it is important that the singlet
state is polarized neither in the first order in the intensity
nor in the second one.

Our results demonstrate the existence of a pure intense
unpolarized state of light with noise suppressed in all
polarization observables. One can say that this state mani-
fests the strongest possible nonclassical correlation be-
tween the intensities in orthogonal polarization modes
regardless of the choice of these modes. This makes the

macroscopic singlet Bell state a possible candidate for
macroscopic Bell tests and other challenging fundamental
experiments. Apart from this, this state will certainly find
important applications in quantum technologies based on
the interaction between light and matter.
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FIG. 2 (color online). Polarization properties of j�ð�Þ
maci (a),

(b) and j�ðþÞ
maci (c),(d). Green large empty circles: the NRF of

the Stokes observable versus the orientation of the HWP (a),(c)
and QWP (b),(d). Blue dashed lines mark the measurement of
VarðS1Þ=hS0i, green dotted lines of VarðS2Þ=hS0i, and red solid
lines of VarðS3Þ=hS0i. Small squares denote normalized signals
in both detectors.
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