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The Balian-Vénéroni (BV) variational principle, which optimizes the evolution of the state according to

the relevant observable, is used at the mean-field level to determine the particle-number fluctuations in

fragments of many-body systems. For fermions, the numerical evaluation of such fluctuations requires the

use of a time-dependent Hartree-Fock (TDHF) code. Proton, neutron, and total nucleon number fluctua-

tions in fragments produced in collisions of two 40Ca are computed well above the fusion barrier. For

deep-inelastic collisions, the fluctuations calculated from the BV variational principle are much larger

than standard TDHF results, and closer to experimental fluctuations. Correlations between proton and

neutron numbers are determined. These correlations are shown to be larger with exotic systems where

charge equilibration occurs.
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The quantum many-body problem is the root of many
theoretical fields aiming at describing interacting particles
such as electrons in metals, molecules, atomic clusters,
Bose-Einstein condensates, or atomic nuclei [1].
However, it can be solved exactly for simple cases only.
The Balian-Vénéroni (BV) variational principle [2] offers
an elegant starting point to build approximations of the
many-body dynamics and has been applied to different
problems in nuclear physics [3–8], hot Fermi gas [9], �4

theory [10], and Boson systems [11,12]. In particular,
applications to deep-inelastic collisions (DIC) of atomic
nuclei should be of interests to the upcoming exotic beam
facilities. DIC will be used to investigate the role of the
isospin degree of freedom in reactions and to extract the
density dependence of the symmetry energy. Such reac-
tions will produce nuclei in extreme, sometimes unknown,
states (e.g., rotating nuclei with a neutron skin, or nuclei at
or beyond the drip-lines).

Assuming an initial density matrix D̂0 at t0, the BV
variational principle optimizes the expectation value of

an observable hQ̂i ¼ TrðD̂ Q̂Þ at a later time t1. In this

approach, both the state D̂ðtÞ and the observable Q̂ðtÞ
vary between t0 and t1 within their respective variational
spaces. In most practical applications, mean-field models
are considered in a first approximation, and, eventually,
serve as a basis for beyond-mean-field approaches [13,14].

For instance, restricting the variational space of D̂ðtÞ to

pure independent particle states, and the one of Q̂ðtÞ to one-
body operators, leads to the TDHF equation [15]

i@
@�

@t
¼ ½h½��; ��; (1)

where � is the one-body density-matrix and h½�� is the
Hartree-Fock (HF) single-particle Hamiltonian. According

to this variational approach, TDHF is, then, the best mean-
field theory to describe expectation values of one-body
observables. However, it should not be used, in principle,

to determine their fluctuations and correlations �XY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX̂ Ŷi � hX̂ihŶi

q
(X̂ and Ŷ are one-body operators, and

fluctuations correspond to the case X̂ ¼ Ŷ) because the

X̂ Ŷ term is outside the variational space of the observable.
Indeed, the TDHF expression for �XY ,

�2
XYðt1Þ ¼ TrfY�ðt1ÞX½I� �ðt1Þ�g; (2)

where I is the identity matrix, has been tested on fragment

mass and charge fluctuations in DIC [16]. In this case, X̂ ¼
Ŷ counts the nucleons or protons of one fragment in the exit

channel. X and Y are the matrices associated to X̂ and Ŷ,
respectively, in single-particle space. It was shown that
TDHF strongly underestimates experimental fluctuations
[16]. This is an intrinsic limitation to TDHF [17] which can
be understood by the fact that, in such violent collisions,
transfer of many particles may occur leading to very differ-
ent mean-fields than the quasielastic one, while TDHF
assumes that all mean fields are the same. As a result,
transfer of many particles are artificially hindered. The
knowledge of such fluctuations is, however, crucial to all
quantum systems. Thus, their theoretical prediction is an
important challenge for quantum many-body models.
To optimize fluctuations of one-body operators, the

variational space for the observable has to be increased

to Q̂ 2 fe�âyâg, where � 2 R and â and ây are particle
annihilators and creators, respectively [18,19]. This leads
to a prescription
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�2
XYðt1Þ ¼ lim

�!0

Trf½�ðt0Þ � �Xðt0; �Þ�½�ðt0Þ � �Yðt0; �Þ�g
2�2

(3)

differing from Eq. (2). The one-body density matrices
�Xðt; �Þ obey the TDHF equation (1) with the boundary
condition

�Xðt1; �Þ ¼ expði�XÞ�ðt1Þ expð�i�XÞ; (4)

while �ðtÞ is the TDHF solution with initial condition �ðt0Þ
being the one-body density matrix of D̂0. The result in
Eq. (3) takes into account possible fluctuations around the
TDHF mean-field evolution in the small amplitude limit,
i.e., at the RPA level [18,19] [see also Ref. [20] for an
alternative derivation of Eq. (3)]. These fluctuations are
generated by the boost in Eq. (4) and propagated in the
backward Heisenberg picture from t1 to t0 according to
the dual of the time-dependent RPA equation. This is why
�XYðt1Þ is expressed as a function of density matrices at the
initial time t0. It is easy to show that, if the backward
trajectories �X have the same mean-field as the forward
evolution, then Eq. (3) leads to the TDHF expression in
Eq. (2). If, however, (small) deviations occur around the
original mean-field, then additional terms appear and lead
to an increase of �XYðt1Þ. In the following, TDHF and BV
fluctuations or correlations refer to Eqs. (2) and (3),
respectively.

In this work, the BV variational principle is used in
realistic calculations of heavy-ion collisions and first de-
tailed comparisons with experiments are performed. The
technique is similar to the one employed in [4,5]. The
neutron, proton, and mass fluctuations �NN , �ZZ, and
�AA, respectively, and the correlation�NZ between neutron
and proton numbers distributions, are computed in frag-
ments resulting both from deep-inelastic and quasielastic
collisions. The correlations�NZ are determined for the first
time within a quantum microscopic approach.

The TDHF3D code is used with the SLy4d parametriza-
tion [21] of the Skyrme energy-density-functional [22].
The TDHF Eq. (1) is solved iteratively, with a time step
�t ¼ 1:5� 10�24 s, in the center of mass (c.m.) frame.
�t ¼ 10�24 s is also used to confirm the convergence of
the BV fluctuations. The single-particle wave functions are
evolved on a Cartesian grid of 56� 56� 28=2 points with
a plane of symmetry (the collision plane) and a mesh-size
�x ¼ 0:8 fm. The initial distance between collision part-
ners is 22.4 fm. References [13,23] give more details of the
TDHF calculations.

To evaluate Eq. (3), the first step is to perform a TDHF
evolution from t0 to t1. To account for the transformation of
Eq. (4), at time t1, the occupied single-particle wave func-
tions are boosted according to j’Xj

ðt1; �Þi ¼
exp½i�qXj

�ðr̂Þ�j’jðt1Þi, where X stands for N, Z, or A. If

the occupied single-particle wave function ’j refers to a

proton (respectively, a neutron), qNj
¼ 0 and qZj

¼ 1

(respectively, qNj
¼ 1 and qZj

¼ 0), while qAj
¼ 1 for

protons and neutrons. The function �ðrÞ is equal to 1 for
the fragment on which the fluctuations are calculated, and
0 elsewhere. The time t1 is determined, for each collision,
by the time at which at least one fragment c.m. reaches
11.2 fm from one edge of the box. It ensures a minimum
separation distance of 22.4 fm for symmetric collisions.
This value is large enough to ensure a convergence of �XY

with t1 as the fragments interact only via Coulomb repul-
sion [4,5].
The second step is to compute a backward evolution

from t1 to t0 of each set of single-particle wave functions
’Xi

ðt; �Þ. Several values of 10�4 � � � 10�2 are consid-

ered to determine the limit in Eq. (3). Following
Refs. [4,8], the initial density matrix �ðt0Þ in Eq. (3) is re-
placed by a backward evolved density matrix �Iðt0; � ¼ 0Þ,
i.e., without the transformation in Eq. (4), to minimize
numerical inaccuracies. Note that the latter are easily con-
trollable and this procedure is not necessary with a smaller
time step �t. The trace in Eq. (3) is then evaluated with
Trf½�Iðt0; 0Þ � �Xðt0; �Þ�½�Iðt0; 0Þ � �Yðt0; �Þ�g ¼ �IIþ
�XY � �IX � �IY , where �XX0 ¼ P

ijjh’Xi
ðt0Þj’X0

j
ðt0Þij2,

and the sums run over occupied states. The quadratic
evolution of the trace with � is used as a convergence
check [5], as well as the property �II ¼ At, where At is
the total number of nucleons.
Let us first investigate the collision of two 40Ca nuclei at

Ec:m: ¼ 128 MeV. This system is considered as a bench-
mark for experimental studies of DIC [24,25].
Theoretically, the HF ground state of 40Ca is expected to
be a good approximation because of its doubly magic
nature. Figure 1(a) shows the scattering angle �c:m: as a
function of the angular momentum L. For L � 90, the
trajectories are close to Rutherford scattering (dashed
line) and correspond to quasielastic reactions with small
total kinetic energy loss (TKEL) as shown by the solid line
in Fig. 1(b). At lower L, deviations from the Rutherford
formula occur because of nuclear attraction, leading to
rotation of the dinuclear system formed by the two frag-
ments in contact. For instance, L � 72 defines (arbitrarily)
the orbiting region where the fragments have crossed their
incoming trajectory, i.e., with n � 4 crossings of the x
(collision axis) or y axis [see inset in Fig. 1(a)].
Following [24], damped events are defined by a TKEL �
30 MeV, corresponding to L < 82 in Fig. 1. We see that a
wide range of scattering angles may occur for these
damped events, which is a known feature of DIC. For L �
66, capture occurs. It corresponds to a fusion cross section
of �1140 mb with the sharp cutoff formula [13], in good
agreement with a fit on fusion-evaporation measurements
at lower energies [26].
Figure 1(b) shows BV and TDHF predictions of �ZZ

(only charge fluctuations are shown for clarity). The TDHF
fluctuations [Eq. (2)] have been determined from the
probability distributions of A, Z, and N in the fragments
at time t1 [23]. BV predictions from Eq. (3) at L ¼ 71
are not shown as no numerical convergence with � could be
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obtained. Strong variations of the BV fluctuations are
observed in the orbiting region, but there is no clear
relationship with the amount of orbiting quantified by n
in Fig. 1(a). The BV fluctuations are much more important
than the TDHF predictions for damped events. However, at
large L (quasielastic reactions), the BVand TDHF fluctua-
tions are similar.

The evolution of �ZZ with �c:m: is plotted in Fig. 2 for
damped events, and compared with experimental data [24].
TDHF fluctuations show no angular correlation and
strongly underestimate data. BV fluctuations increase
with �c:m: at small angles and form a plateau at large
angles, in qualitative agreement with data. Quantitatively,
the experimental plateau is underestimated. This might be
attributed to fusion-fission events leading to large fluctua-
tions and not included in the calculations. Indeed, the
compound-nucleus fission cross section, estimated to be
�280 mb [24], is not negligible compared to the cross-
section for damped binary events of �570 mb from the
present calculations. Note that this fission cross section
seems reasonable as it corresponds to a fusion-evaporation
cross section of �860 mb (obtained from the difference
between the fusion and fusion-fission cross sections),
which is compatible with data [26]. Because of the iso-
tropic distribution of fission fragments, fusion-fission
would mostly affect large angles in Fig. 2 and may account
for the difference between BV predictions and data. As the

fragments cool down by nucleon emission, their fluctua-
tions might also increase [7]. Although the number of
TDHF iterations is too small to allow a full decay of the
fragments by nucleon emission, we can estimate their
excitation energy E� ’ ðTKELÞ=2 and angular momenta
Jf ’ ðL� LoutÞ=2 [see Fig. 1(b)], assuming equal sharing,

where Lout is the angular momentum between the frag-
ments in the outgoing channel. Calculations using the code
PACE4 [27] with a level density parameter A=7:5 MeV�1

show that the decay of fragments produced in DIC has only
a small effect on �ZZ (see also [16]). However, the average
of the fragment charge distribution after decay goes from
�Z ’ 19 for L ’ 80 down to 18 in the orbiting region while
experimental data give �Z ’ 17 at large angle [24]. This
might also be a signature of fusion-fission events. Indeed,
symmetric fission leads to E� ’ 38:2 MeV according to the
Viola systematics [28], and, then, to more emission of light
particles than in DIC where E� ’ 31 MeV in average in the
orbiting region [see Fig. 1(b)]. Beyond mean-field corre-
lations may also affect these fluctuations.
Fragment mass distributions in 40Caþ 40Ca have been

measured at lower energies, Ec:m: ¼ 98:5 and 115.5 MeV,
where fusion-fission can be neglected [25]. In this experi-
ment, the fragments are associated to almost fully damped
collisions with a sin�1�c:m: dependence of their cross sec-
tion. In the present work, such collisions occur in the
orbiting region for which �AA ’ 9:7 in average. This is in
good agreement with the data which give �AA ’ 11.
In addition to fluctuations, the BV correlations�NZ have

been computed [triangles in Fig. 1(b)]. These finite values
of �NZ are at variance with the TDHF correlations which
are strictly zero because the single-particle states are as-
sumed to have pure isospin. In fact, the probability PðN; ZÞ
to have a fragment with Z and N, in TDHF calculations, is
the product of the probabilities PðZÞPðNÞ to have Z and N,
independently [23]. For instance, in the symmetric colli-
sions studied here, the TDHF probability to have the N ¼
Z 32S nucleus is the same as for the neutron rich 40S. The
latter should, however, be hindered by the symmetry en-
ergy which induces a fast charge equilibration in the frag-
ments [29]. Such effect is included in the BV approach
which give �NZ ’ �ZZ in damped collisions, while, in
quasielastic reactions, correlations are negligible
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FIG. 2 (color online). Comparison between BV (solid line) and
TDHF (dashed line) predictions of �ZZ for damped events (see
text) as a function of �c:m: with data (circles) from [24].

0

30

60

90

θ c.
m

. (
de

g.
)

n=1
n=2
n=3
n=4
n=5
n=8

(a)

x

y

n=1

n=3
C

ap
tu

re

O
rb

iti
ng

FIG. 1 (color online). (a) Scattering angle as a function of
angular momentum L in units of @ for 40Caþ 40Ca at Ec:m: ¼
128 MeV. n is the number of times the x (collision axis) or y axis
has been crossed by the fragment. The solid line is to guide the
eye. The dashed line corresponds to Rutherford trajectories. The
inset gives examples of trajectories for n ¼ 1 and 3. (b) TDHF
(dashed line) and BV (circles) fluctuations of Z, BV correlations
between N and Z (triangles), and intrinsic angular momentum Jf
of the outgoing fragments (dot-dashed line). The TKEL (solid
line) is given in units of 10 MeV. The vertical dotted lines show
the range of L leading to orbiting or capture trajectories.
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compared to fluctuations [see Fig. 1(b)]. Note that the fact
that BV and TDHF predictions are similar for large L
allows the use of TDHF to investigate quasielastic reac-
tions [23]. The present calculations also give �NN ’ �ZZ

for all L, �AA ’ 1:5�ZZ for L � 90 and �AA ’ 2�ZZ in the
orbiting region. This is in good agreement with the relation
�2

AA ¼ �2
ZZ þ �2

NN þ 2�2
NZ and the behavior of �NZ.

Finally, the 80;92Krþ 90Zr systems at beam energy
E=A ¼ 8:5 MeV are investigated to study the role of iso-
spin asymmetry in the entrance channel. The calculations
are performed at L ¼ 192:2 with 80Kr and 222.6 with 92Kr

corresponding to touching spheres of radii 1:2A1=3 at clos-
est approach. The N=Z ratio of 80Kr and 90Zr are similar
(1.22 and 1.25, respectively) but differ from the one of 92Kr
(1.56). Then, charge equilibration occurs only with 92Kr
where the calculations give an average N=Z ’ 1:4 in both
outgoing fragments. The BV prescription gives �ZZ ’ 5:3,
�NN ’ 7:1, and �NZ ’ 5:7 with 80Kr, and �ZZ ’ 4:7,
�NN ’ 8:4, and �NZ ’ 8:5 with 92Kr. Fluctuations are
only slightly affected, while charge equilibration strongly
increases correlations between N and Z distributions
(by �50%).

The BV prescription leads to fragment mass and charge
fluctuations in better agreement with experiment than
TDHF for violent collisions, although TDHF should be
sufficient for quasielastic reactions. The predictions of
correlations between N and Z distributions is an attractive
feature which should be compared with experimental data
where both mass and charge of each fragment are mea-
sured. In particular, reactions with exotic beams will allow
strong N=Z asymmetries, and such correlations are ex-
pected to be increased by the charge equilibration process.
Applications to multinucleon transfer in actinide collisions
could be used to predict probabilities for superheavy ele-
ment production [30,31]. The role of pairing correlations
on fluctuations should be investigated using recent time-
dependent Hartree-Fock-Bogoliubov codes [32–34].
Stochastic-mean-field methods might also be applied to
investigate the role of initial beyond-mean-field correla-
tions on fluctuations [20,35].
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[6] M. Zielinska-Pfabé and C. Grégoire, Phys. Rev. C 37,

2594 (1988).
[7] J.M.A. Broomfield and P.D. Stevenson, J. Phys. G 35,

095102 (2008).
[8] J.M.A. Broomfield, Ph.D. thesis, University of Surrey,

2009.
[9] C. Martin and D. Vautherin, Phys. Lett. B 260, 1 (1991).
[10] C. Martin, Phys. Rev. D 52, 7121 (1995).
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