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Interacting lattice bosons at integer filling can support two distinct insulating phases, which are

separated by a critical point: the Mott insulator and the Haldane insulator [E.G. Dalla Torre, E. Berg,

and E. Altman, Phys. Rev. Lett. 97, 260401 (2006).]. The critical point can be gapped out by breaking

lattice inversion symmetry. Here, we show that encircling this critical point adiabatically pumps one boson

across the system. When multiple chains are coupled, the two insulating phases are no longer sharply

distinct, but the pumping property survives. This leads to strict constraints on the topology of the phase

diagram of systems of quasi-one-dimensional interacting bosons.
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In the early 1980s, Thouless [1] made the surprising
observation that certain band insulators can sustain dissi-
pationless and quantized charge transport by adiabatic
pumping. The classic example of this effect is seen in a
half-filled tight binding chain with two sites per unit cell
[1]. As parameters of the Hamiltonian are changed adia-
batically along a closed loop around the single gapless
point in the two parameter space, a unit charge is trans-
ported through the chain. This simple observation had
interesting implications to other systems. For example, it
was quickly realized [2,3], that Laughlin’s original argu-
ment for the quantization of the Hall conductance may be
formulated in the same mathematical terms as the pumping
problem. In connection with more recent developments,
the ideas of topological pumping through band insulators
were precursors of the theoretical [4–7] and subsequent
experimental [8,9] discovery of topological band insula-
tors. Indeed, the Z2 topological invariant associated with
these systems can be reformulated in terms of adiabatic
pumping [10].

Although quantized pumping has been discussed
primarily in the context of noninteracting fermions, the
concept is much more general. The pumped charge can be
formulated in terms of a topological Chern number asso-
ciated with parallel transport of the many-body wave func-
tion in Hilbert space [2,3]. In particular this formulation
ensures robustness of the quantization to disorder and
interaction and also enables direct extension of the con-
cepts to spin pumping in spin-1=2 chains [11]. All these
extensions are adiabatically connected to the case of a
band insulator, either directly or via a Jordan-Wigner
transformation.

In this Letter we show that a natural model of interacting
lattice bosons at integer filling, which is not directly
mappable to a band insulator, allows quantized transport
through Mott insulating states by adiabatic pumping. The
existence of nontrivial loops in the gapped regions of

parameter space defines a topological index, which may
be associated with the gapless (superfluid) phases they
surround. It also sets constraints on the structure of the
phase diagram, or more precisely, on the topology of
the gapless regions within it.
The basic model we consider is an extended Bose

Hubbard model (EBHM), at integer filling, on coupled
chains

H ¼ X
�

½H� þH�;� þH?;��; (1)

where

H� ¼ X
j

�
�tðby�;jb�;jþ1 þ H:c:Þ þU

2
n�;jðn�;j þ 1Þ

�

þ V
X
j

n�;jn�;jþ1; (2)

is a single chain Hamiltonian defined on chain �. by�;j
creates a boson at position j in chain �, and n�;j �
by�;jb�;j. The Hamiltonian

H�;� ¼ �
X
j

½n�;jby�;jb�;jþ1 � n�;jþ1b
y
�;jþ1b�;j þ H:c:�;

(3)

is a perturbation that breaks the bond-centered inversion
symmetry of H�. Finally,

H?;� ¼ X
j

½�t?ðby�;jb�þ1;j þ H:c:Þ þ V?n�;jn�þ1;j� (4)

denotes interchain coupling. The model (1) or related
Hamiltonians can be realized with ultracold dipolar mole-
cules or atoms with optically induced dipole moments [12].
Crucial for our analysis is the presence of the perturbation
�, which breaks the inversion symmetry of the chain. It
will be naturally generated if the underlying optical poten-
tial is not symmetric under inversion. Such a lattice
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potential can be produced by two lasers, one of which has
double the wavelength of the other. In one extreme limit
this configuration gives rise to a lattice of double well
potentials [13,14], which indeed are not inversion symmet-
ric in general.

A single chain.—We have shown previously, that the
EBHM on a single chain [Eq. (2)] exhibits a quantum
phase transition from a Mott insulating (MI) state to a
novel gapped phase, which we termed a ‘‘Haldane insula-
tor’’ (HI), upon increasing the nearest neighbor interaction
[15]. Both phases are completely disordered in the sense
that they do not break any symmetry of the Hamiltonian.
The new state is analogous to the Haldane gapped state
of spin-1 chains, and is characterized by a string order
parameter, albeit in the boson density rather than the spin.
It was later shown [16–19], that the distinction between the
HI and MI phases is protected by lattice inversion symme-
try. A perturbation, such as H�;� above, which breaks the

inversion symmetry about a bond, opens a gap at the HI-MI
transition and allows adiabatic connection between the two
gapped phases. Thus, in the two parameter space (V, �) the
transition becomes an isolated critical point. We shall
argue that an adiabatic passage around the critical point
entails transport of a single boson through the chain.

To see this we turn to the long-wavelength description of
the extended Hubbard chain, with the inversion symmetry
breaking perturbation �. Near to the HI-MI phase transition
it is given by the following sine-Gordon field theory [16]

H0 ¼ u

2�

Z
dx

�
Kð@x�Þ2 þ 1

K
ð@x�Þ2

� g cosð2�Þ � � sinð2�Þ
�
; (5)

with the Luttinger parameterK in the regime 1=2<K < 2.
The parameter g is in general a complicated function of the
microscopic interactions. gðU;V; tÞ> 0 in the MI phase,
g < 0 in the HI and vanishes on the critical line separating
these two phases. A naive continuum limit gives the ap-
proximate dependence g�U=2�V [16]. Here @x�=�¼�
is the long-wavelength component of the boson density, �
is its dual field satisfying ½@x�ðxÞ; �ðx0Þ� ¼ i��ðx� x0Þ,
and u is the sound velocity. Note that under inversion,
�ðxÞ ! �ð�xÞ; therefore, �ðxÞ ! ��ð�xÞ, which makes
it clear that the � term is odd under inversion. The last two
terms can be written compactly as ~g cosð2�� �Þ, where
~g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ �2
p

and � ¼ arctanð�=gÞ. In the regime of in-
terest K < 2, making the cosine term relevant. cosð2n�Þ
and sinð2n�Þ with n > 1 may also appear in H0, but we
assume that these terms are irrelevant at the HI-MI critical
point, (� ¼ 0, g ¼ 0).

The critical point is entirely surrounded by a gapped
state [see Fig. 1(a)] in which the field � is essentially
locked to the value �=2. Therefore an adiabatic change
of the system parameters, which takes it in a counterclock-
wise loop around the critical point, incurs a continuous

change of �ðxÞ by � everywhere in space. By definition of
the field, �ðxÞ suffers a � shift every time a particle passes
through x. The last observation implies the transport of
exactly one boson from left to right in a counterclockwise
loop. Another way to derive the quantization is to refer-
mionize the field theory (5). The quantized charge can be
computed directly for K ¼ 1, which maps to free fermions
[20]. It follows for other values of K by adiabatic
continuity.
To enable continuous pumping, the chain must be

connected to gapless reservoirs. This arises naturally in a
realization using an optical lattice and a harmonic trap in
which the incompressible phase will be flanked by super-
fluid wings. The adiabaticity condition needed to ensure

quantized pumping is _� � ���ð~g=�Þ1=ð2�KÞ [20],
where� is the gap along the cycle.�, the ultraviolet cutoff
of the continuum theory, is of the order of the bandwidth 2t.
The topological character of the pumped charge makes it

robust to small perturbations of the Hamiltonian [2]. In
particular, for the case of many weakly coupled chains,
driving all chains adiabatically along loop A still pumps
one boson per chain. For arbitrary coupling between
chains, we shall see that the quantization of the pumped

FIG. 1 (color online). Phase diagram topology. (a) Phase dia-
gram of a single chain. The parameter g tunes across the Haldane
(HI) to Mott (MI) insulator transition. These two phases are
sharply defined only in the presence of inversion symmetry
(� ¼ 0). A closed adiabatic path which encircles the critical
point (path A) entails pumping of a single boson across the
insulator. (b) Schematic phase diagram of two coupled chains.
The MI and HI phases can be adiabatically connected via the
dashed path. However, since path 1 pumps one boson per chain,
it cannot be collapsed adiabatically to a point without crossing
the gapless region. Path 2 entails the pumping of one boson per
two chains.
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charge imposes stringent constraints on the topology of
the phase diagram in the enlarged parameter space. We
demonstrate this below using the example of two coupled
chains and then comment on generalizations to any number
of coupled chains.

Two coupled chains.—The critical point at ðg; �Þ ¼ 0 is
unstable to weak tunnel coupling t? between a pair of
chains [16]. Using a renormalization group analysis we
have shown that the critical point expands to a gapless
phase (Luttinger liquid) with radius�t

	
? around the origin

in the space (g, �), where the precise exponent	 is given in
Ref. [16].

How is the pumped charge associated with an adiabatic
cycle around the critical point, affected by turning on the
interchain coupling t?? As long as the path encircles the
gapless region from the outside, then it is adiabatically
connected to the nontrivial pumping cycle around the
HI-MI critical point of the decoupled chains. The topologi-
cal Chern number cannot change and hence the pumped
charge must remain quantized at one boson per chain upon
encircling the gapless region. Below we address the
evolution of the gapless region for increasing interchain
coupling beyond weak coupling.

To understand how the phase diagram evolves with
stronger values of interchain coupling we should take
into account another crucial fact. For two chains there is
no sharp distinction between the HI and MI phases, even in
the presence of inversion symmetry (� ¼ 0) [18]. This
means that the HI and MI phases of two decoupled chains
can be connected adiabatically by a path in Hamiltonian
space going through a region with nonzero interchain
coupling. We demonstrate this explicitly using a density
matrix renormalization group (DMRG) calculation of the
following spin-1 ladder model:

Hspin ¼
X
i;�

½VSz�;iSz�;iþ1 � tðSþ�;iS��;iþ1 þ H:c:Þ þUðSz�;iÞ2

þ �ðSz�;iSþ�;iS��;iþ1 � Sz�;iþ1S
þ
�;iþ1S

�
�;i þ H:c:Þ�

þX
i

½V?Sz1;iS
z
2;i � t?ðSþ1;iS�2;i þ H:c:Þ�: (6)

This model can be thought of as a truncation of the EBHM
(1) to the space of the three lowest occupation states ni ¼
Szi þ 1 [21]. Crucially, the two models have the same low
energy limit [16,22].

Figure 2 shows the phase diagram of the model (6), as a
function of t?, �, and U, which is used to tune the MI-HI
transition. (U is related to g in Eq. (5) by g / U�Uc,
where Uc is the location of the MI-HI transition.) We have
fixed V ¼ 2t and V? ¼ 2t?. The phase diagram was de-
termined by measuring the spin gap, �s ¼ EðS ¼ 1Þ�
EðS ¼ 0Þ, and extrapolating it to the thermodynamic limit.
System sizes of up to L ¼ 64� 2 were used, keeping
m ¼ 200 states.

We see in Fig. 2, that upon increasing the interchain
coupling t? and V? the HI-MI critical point first expands to

a gapless region as predicted by the weak coupling theory
[16], but collapses at stronger coupling, allowing for an
adiabatic connection between the HI and MI states. The
fact that the gapless region ends may at first seem contra-
dictory to our previous assertion that an adiabatic loop
around this region in the space (g, �) entails pumping of
one boson per chain. If the gapless region ends, and the
loop can be collapsed adiabatically to a trivial point in
the gapped state with increasing interchain coupling, how
can it sustain a nontrivial Chern number?
To avoid this contradiction, the gapless region must split

into two branches in the�� directions, which either extend
indefinitely, or terminate discontinuously on a 1st order
transition plane. With this topology, a loop surrounding the
original critical point at t? ¼ 0 cannot be collapsed adia-
batically into a point. The numerically obtained phase
diagram in Fig. 2 is consistent with these considerations:
although the superfluid region in the � ¼ 0 plane is finite,
it has two branches which extend in the �� directions.
These branches do not terminate up to the largest values of
� we examined (in [20] we present results for higher �
values).
Given the topology of the gapless phase it is natural to

ask what is the pumped charge associated with a path
surrounding only one of the two branches at either positive
or negative � [path 2 in Fig. 1(b)]. Such a path has no
counterpart in the single chain system and it cannot be
continuously deformed into a loop that surrounds an iso-
lated critical point. Nevertheless, we argue that the Chern
number associated with this path is determined by the
topological character of the HI-MI critical point. A simple
way to approach this problem is to note that two loops,

FIG. 2 (color online). Phase diagram of the spin-1 two-leg
ladder defined in Eq. (6) as a function of U, t?, and �, calculated
using DMRG. We have fixed V? ¼ 2t?. For t? ¼ � ¼ 0, there
are two distinct gapped phases, the HI and MI, which are
separated by a critical point at U � 1. Upon turning on t?,
the critical point expands to a finite superfluid (SF) region, and
the two gapped phases are not sharply distinct. For � > 0, the
MI-HI critical point at t? ¼ 0 becomes gapped. The gapless
region shrinks upon increasing �, but does not disappear. The
phase diagram has the same topology as in Fig. 1(b).
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each encircling one of the two branches, can be deformed
into a single loop which encircles both branches. Such a
loop corresponds to pumping of two bosons as discussed
above. Therefore, by symmetry of the �� branches, each
of the isolated loops entails pumping of one boson along
the ladder, or half a boson per chain.

The distribution of quantized charge among different
loops in parameter space can be succinctly represented in
terms of a fictitious quantized magnetic flux running
through gapless regions in the three-dimensional parame-
ter space. Two flux quanta, one for each chain, are inserted
through the isolated HI-MI critical point in the t? direc-
tion, and must split evenly between the two branches at
��. The quantized pumping therefore defines a topologi-
cal index, the fictitious quantized flux, that is associated
with the gapless phases.

More than two chains.—Without interchain coupling, N
parallel chains are just N copies of the single chain prob-
lem, and so an adiabatic cycle around the critical point
implies pumping of N bosons along the decoupled chains.
As before, this charge cannot change suddenly with the
introduction of interchain coupling t?. Hence, in the
extended parameter space the critical point at the origin
t? ¼ 0 is a source of N quanta of the fictitious flux. The
gapless phase at finite t? may branch out, as in the case of
two chains, while the fictitious flux running through all the
branches must add up to exactly N.

There is another topological constraint on the branching
of the gapless phase with increasing t?. From the construc-
tion of Refs. [18,19], follows a sharp distinction between
the Haldane insulator and the Mott insulator phase on any
ladder with an odd number of chains. That is, without
breaking inversion symmetry, 2N þ 1 decoupled chains
in the HI phase cannot be connected adiabatically to de-
coupled chains in the MI phase by an adiabatic path going
through finite t?, in contrast to the two leg case considered
above. Therefore in a ladder with odd number of legs the
gapless phase must persist indefinitely on the plane with
inversion symmetry, i.e, � ¼ 0.

Conclusions.—Topological properties of matter are usu-
ally associated with gapped regions of the phase diagram.
Here, we have shown that in a model of interacting bosons,
it is natural to associate a topological ‘‘flux’’ with the
gapless (superfluid) regions, which is defined by the
pumped charge upon encircling these regions adiabatically.
This property can be argued to be more profound, in the
sense that the gapped phases discussed here are only dis-
tinct from each other as long as certain symmetries (e.g.,
inversion symmetry) are preserved, while the topological
flux associated with the gapless region is robust against
arbitrary particle number conserving perturbations. This
principle can be used to impose constraints on the topology
of the phase diagram; for example, it implies that a gapless
region which carries a nonzero topological flux cannot
terminate.

Similarly, topological insulators in two and three dimen-
sions are only well-defined as long as time-reversal sym-
metry is preserved. However, the gapless region separating
the topologically trivial and nontrivial phase may carry a
topological flux, which remains well defined even when
time-reversal symmetry is broken. That can hopefully shed
new light on the nature of topological insulators [23].
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