
Entanglement between the Future and the Past in the Quantum Vacuum

S. Jay Olson* and Timothy C. Ralph

Centre for Quantum Computing Technology, Department of Physics, University of Queensland, St Lucia, Queensland 4072, Australia
(Received 5 March 2010; published 17 March 2011)

We note that massless fields within the future and past light cone may be quantized as independent

systems. The vacuum is shown to be a nonseparable state of these systems, exactly mirroring the known

entanglement between the spacelike separated Rindler wedges. This leads to a notion of timelike

entanglement. We describe an inertial detector which exhibits a thermal response to the vacuum when

switched on at t ¼ 0, due to this property. The feasibility of detecting this effect is discussed, with natural

experimental parameters appearing at the scale of 100 GHz.
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A basic and far-reaching property of the quantum vac-
uum is that it is an entangled state—a fact underlying an
impressive number of theoretical insights and predictions
[1]. In the case of flat Minkowski space-time, this is
typically shown in the context of the Unruh effect [2–4].
There, the vacuum state of the field can be written as an
entangled state between two sets of modes, respectively,
spanning two space-time wedges, known as the Rindler
wedges (see Fig. 1). A uniformly accelerated observer sees
only one set of Rindler modes. The tracing out of the
unobserved modes leads to the prediction that such an
accelerated observer sees a thermalized vacuum.

Having been predicted over 30 years ago, the Unruh
effect remains unobserved. Its validity, though widely
accepted, is sometimes debated on theoretical grounds
[5–7]. The small scale of the effect motivates a search for
related phenomena that can be tested experimentally.

Here, our main result is to demonstrate that the same
entanglement exists between massless fields within the
future and past light cone (F and P) as between the left
and right Rindler wedges (L and R), and that the Unruh
effect can be mapped onto an equivalent thermal effect for
an inertial observer interacting with the field only in the
future or the past. We will show the explicit form of this
timelike entanglement for a massless scalar field in 2-d
space-time, and the detector effect in 4-d space-time.
Dimensional analysis suggests that observation of this
effect may be within range of current technology.

This Letter is organized as follows: We first note that
massless fields in F and P may be quantized as indepen-
dent systems, and then describe our coordinatization of
space-time, and the mode functions living in each quad-
rant. We then express the state of the Minkowski vacuum
restricted to F and P in terms of these modes, and note
entanglement. An Unruh-DeWitt detector is then de-
scribed, which shows a thermal response to these modes
in F (or P). The feasibility of an experimental observation
of this effect is discussed. We then offer some conclusions.

Future-past as independent systems.—The concept of
entanglement between the left and right Rindler wedges

rests on the fact that the fields within may be quantized
as independent systems. This is expressed through the

vanishing of the Pauli-Jordan function, i�ðx� yÞ ¼
½�̂ðxÞ; �̂yðyÞ� for spacelike intervals. This general feature
holds for both massive and massless fields.
In the case of massless fields, however, the Pauli-Jordan

function �ðx� yÞ vanishes for all but lightlike intervals,
ðx� yÞ2 ¼ 0 [8]. In particular, it vanishes for timelike
intervals. This will allow us to regard the fields in F and
P as independent systems.
In what follows, we assume a massless, noninteracting

field for which �̂ðxFÞ and �̂ðxPÞ commute. It is important
to note that the concept of independent systems also re-
mains valid as an approximation when the commutator is
small but nonvanishing, as in the case of an arbitrarily
small but nonvanishing mass. This ensures that the concept
of timelike entanglement we develop here remains stable
under small deviations from the ideal case.
Coordinates.—We now break space-time into quadrants

F, P, R, L, and introduce coordinates for each. Each of
these coordinate systems will be used to define a set of field
modes, complete in each region. We emphasize that these
modes are not all independent from one another; the modes

FIG. 1. Space-time divided into quadrants consisting of re-
gions contained by the future and past light cones (F and P),
and the right and left Rindler wedges (R and L).

PRL 106, 110404 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 MARCH 2011

0031-9007=11=106(11)=110404(4) 110404-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.110404


in F are independent from modes in P, but they are not
independent of the modes in R and L.

In F, we adopt the coordinates � and � :

t ¼ a�1ea� coshða�Þ; (1)

z ¼ a�1ea� sinhða�Þ: (2)

In P, we will use the coordinates �� and ��:

t ¼ �a�1ea �� coshða ��Þ; (3)

z ¼ �a�1ea �� sinhða ��Þ: (4)

These are to be compared with the usual Rindler coor-
dinates � and �, in R:

t ¼ a�1ea� sinhða�Þ; (5)

z ¼ a�1ea� coshða�Þ: (6)

As well as �� and ��, in L:

t ¼ �a�1ea �� sinhða ��Þ; (7)

z ¼ �a�1ea �� coshða ��Þ: (8)

In each of these coordinate systems the metric is con-
formally Minkowski, and owing to the conformal invari-
ance of the massless wave equation in two dimensions, the
same equation holds separately in the four coordinate
systems (see Eq. 2.46 of [4]), namely,

�
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� @2

@�2

�
F
�¼0;

�
@2

@�2
� @2

@�2

�
R
�¼0; (9)

�
@2

@ ��2
� @2

@ ��2

�
P
�¼0;

�
@2

@ ��2
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@ ��2

�
L
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We now introduce the light-cone coordinates, valid
throughout all space-time:

V ¼ tþ z; U ¼ t� z (11)

and their analogs in the above four coordinate systems:

ðFÞ � ¼ �þ �; � ¼ �� �; (12)

ðPÞ �� ¼ � ��� ��; �� ¼ � ��þ ��; (13)

ðRÞ � ¼ �þ �; 	 ¼ �� �; (14)

ðLÞ �� ¼ � ��� ��; �	 ¼ � ��þ ��: (15)

These are related in the following way

ðFÞ V ¼ a�1ea�; U ¼ a�1ea�; (16)

ðPÞ V ¼ �a�1e� ��; U ¼ �a�1e�a ��; (17)

ðRÞ V ¼ a�1ea�; U ¼ �a�1e�a	; (18)

ðLÞ V ¼ �a�1e�a ��; U ¼ a�1ea �	: (19)

Field expansion, Bogoliubov transformations, and
entanglement.—Using the light-cone coordinates, the field

may be expanded in plane waves as �̂ðV;UÞ ¼R1
0

dk
ð4
kÞ1=2 ½â1ke�ikV þ â1yk eikV þ â2ke

�ikU þ â2yk eikU�. Since

all â1’s commute with all â2’s (corresponding to left and
right moving modes, respectively), we make a common
simplification, and treat only the left moving sector of the

field, �̂ðVÞ ¼ R1
0

dk
ð4
kÞ1=2 ½â1ke�ikV þ â1yk eikV�, with the

understanding that analogous results hold for the right

moving sector �̂ðUÞ as well.
We can expand �̂ðVÞ in the following sets of functions,

in their respective quadrants. The Rindler modes

gR!ð�Þ ¼ ð4
!Þ�1=2e�i!�; (20)

gL!ð ��Þ ¼ ð4
!Þ�1=2e�i! �� (21)

and their analogs in the future and past

gF!ð�Þ ¼ ð4
!Þ�1=2e�i!� (22)

gP!ð ��Þ ¼ ð4
!Þ�1=2e�i! ��: (23)

We note that gF!ð�Þ is the same solution as gR!ð�Þ,
extended from R into F—a fact pointed out by Gerlach
[4,9] in the context of massive fields. This can be seen by
expanding these functions in plane waves

�ðVÞgR!ð�Þ¼
Z 1

0

dk

ð4
kÞ1=2 ð�
R
!ke

�ikVþR
!ke

ikVÞ; (24)

�ðVÞgF!ð�Þ ¼
Z 1

0

dk

ð4
kÞ1=2 ð�
F
!ke

�ikV þ F
!ke

ikVÞ: (25)

Now note that gR!ð�Þ and gF!ð�Þ are identical as func-
tions of V, since �ðVÞ ¼ �ðVÞ, and so they must be built of
exactly the same plane waves. The same relationship holds
for gL!ð�Þ and gP!ð�Þ. In other words, the Bogoliubov
coefficients satisfy

�F
!k ¼ �R

!k; F
!k ¼ R

!k; (26)

�P
!k ¼ �L

!k; P
!k ¼ L

!k: (27)

Thus, the well-known relations between Bogoliubov
coefficients in R and L are duplicated in F and P.
In particular, solving (24) and (25) (and the analogous P
and L relations) leads to Bogoliubov coefficients

which satisfy the relations, P
!k ¼ �e�
!=a�F�

!k and

F
!k ¼ �e�
!=a�P�

!k.

From this point forward, the demonstration of future-
past entanglement of the Minkowski vacuum is exactly
the same as the standard demonstration of right-left entan-
glement, with a change of labels R ! F and L ! P.
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We review the basic argument, and refer the reader to
Crispino, Higuchi, and Matsas [4] for detail.

Using the above Bogoliubov relations, the following
pure-positive frequency modes can be defined

G!ðVÞ ¼ �ðVÞgF!ð�Þ þ �ð�VÞe�
!=agP�! ð ��Þ; (28)

�G!ðVÞ ¼ �ð�VÞgP!ð ��Þ þ �ðVÞe�
!=agF�! ð�Þ: (29)

When the field is expanded in terms of these functions,
the annihilation operators for the G and �G quanta can

readily be seen to be (âF! � e�
!=aâPy! ) and (âP! �
e�
!=aâFy! ) (where the â’s here refer to the g quanta).
Since both G and �G are pure-positive frequency functions
of Minkowski time, their vacuum coincides with the
Minkowski vacuum j0Mi, and we obtain the relations

ðâF! � e�
!=aâPy! Þj0Mi ¼ 0; (30)

ðâP! � e�
!=aâFy! Þj0Mi ¼ 0; (31)

which in turn imply the following:

ðâFy! âF! � âPy! âP!Þj0Mi ¼ 0: (32)

Define the vacuum j0Ti to satisfy âF!j0Ti ¼ âP!j0Ti ¼ 0.
Using the approximation that there are a discrete set of
modes labeled by!i, the relations (30)–(32) imply that the
Minkowski vacuum restricted to F-P may then be expres-
sible in the following form:

j0Mi ¼
Y
i

Ci

X1
ni¼0

e�
ni!i=a

ni!
ðâFy!i

âPy!i
Þni j0Ti; (33)

which is clearly entangled. Also mirroring the Rindler
case, the state of the future (or the past) alone is a ‘‘ther-
mal’’ state of the g!-modes, where ! is a frequency with
respect to the conformal time coordinate �.

�̂F ¼ Y
i

�
C2
i

X1
ni¼0

e�2
ni!i=ajnFi ihnFi j
�
; (34)

where Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2
!i=a

p
.

Detectors.—The above result suggests that an inertial
detector switched on at t ¼ 0 and sensitive to frequency E
with respect to conformal time � should register a thermal
response. This can indeed be seen to be the case. For
completeness, we move now to a 4-d description.

The Schrödinger equation in the conformal time � along
the worldline ~x ¼ 0 takes the following form: i @

@�� ¼
@t
@�H� ¼ atH�. To use perturbation theory in �, we

take the Hamiltonian to be H ¼ H0=atþHI, where HI

is the standard interaction term for an Unruh-DeWitt de-

tector, �m̂ �̂ . The time scaling of the H0 term means the
detector will have a constant �-frequency gap, E.
Converting to �, the Schrödinger equation reads,

i
@

@�
� ¼ ðH0 þ ea�HIÞ�: (35)

The ea� factor in the interaction term means that pertur-
bation theory will eventually break down, as the fixed
coupling to the field eventually dominates the changing
energy gap of the detector. Here, we assume the constants
� and a have been chosen such that perturbation theory
remains valid over times that are large compared to any
other relevant timescale in the problem, and interpret infi-
nite integrals over � as integrals to ‘‘arbitrarily large �
within this approximation.’’
In the Heisenberg picture in �, the detector’s monopole

moment operator evolves like m̂ð�Þ ¼ eiH0�m̂e�iH0�,
while the field operator transforms as a scalar under the

change t ! �, so that �̂ð�Þ ¼ �̂ðtð�ÞÞ. The detector re-
sponse can thus be obtained in the standard way

FðEÞ ¼
Z 1

�1
d�

Z 1

�1
d�0e�iEð���0Þeað�þ�0ÞDþð�;�0Þ;

(36)

where Dþð�;�0Þ ¼ h0Mj�ð�Þ�ð�0Þj0Mi.
This differs from the usual form only in the presence of

the eað�þ�0Þ factor in the integrand, and the fact that the
limits of integration correspond to a detector switched on at
t ¼ 0. The usual regularized form of Dþðx; x0Þ ¼
h0Mj�ðxÞ�ðx0Þj0Mi is given by [1]

Dþðx; x0Þ ¼ � 1

4
2
½ðt� t0 � i�Þ2 � ð ~x� ~x0Þ2��1: (37)

We now note that the functional form of

eað�þ�0ÞDþð�;�0Þ for two points on the inertial trajectory
t ¼ a�1ea�, ~x ¼ 0 is identical to that ofDþðxð�Þ; xð�0ÞÞ for
two points on the accelerated trajectory t ¼ a�1 sinhða�Þ,
x ¼ y ¼ 0, z ¼ a�1 coshða�Þ, up to rescaling of �. This
can be seen through a coordinate substitution, noting for
the inertial trajectory that

1

ðt� t0Þ2 ¼ a2e�að�þ�0Þ

4sinh2ðð a2 ð�� �0ÞÞ (38)

and for the accelerated trajectory:

1

ðt� t0Þ2 � ðz� z0Þ2 ¼ a2

4sinh2ð a2 ð�� �0ÞÞ : (39)

This correspondence thus yields a formally identical
response function integral, in the two cases. Through the
standard evaluation of the response function integral [1],
this leads us to a thermal response at temperature T ¼ @a

2
k .

Note the factor of ‘‘c’’ difference compared with the Unruh
temperature, due to the dimensionality of a in this case (our
scaling parameter). We thus conclude that an inertial, two-
state Unruh-DeWitt detector, whose energy gap is contin-
uously scaled as 1

at responds to the Minkowski vacuum in a

manner identical to an accelerated detector with a fixed
proper-energy gap.
Our results have previously been hinted at in the litera-

ture by Bunch, Christensen, and Fulling [1,10], who
studied a field quantized in F alone, and who noted a
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‘‘thermal correspondence’’ in the particle content of two
different (but pure in F) vacua. More recently, Martinetti
and Rovelli [11] have predicted that a time-dependent
temperature, T ¼ 1

2
t , should be seen by an observer

‘‘born at t ¼ 0,’’ but no detector interpretation was given.
Recently, the response of an inertial Unruh-Dewitt detector
(without frequency scaling) switched on abruptly at t ¼ 0
was computed by Louko and Satz [12]—the response is not
thermal. However, if a detector is designed to compensate
for the changing field temperature with a changing energy
gap, then E

T becomes constant in time, and one might expect

to see a constant thermal response—exactly what we have
shown above. We believe this is the proper interpretation of
the result of Martinetti and Rovelli, in terms of detectors.
Further, our result reveals the source of thermalization via
F-P entanglement.

Feasibility of experimental detection.—The Unruh effect
is notoriously difficult to observe, since the temperature is
so tiny for accessible values of the acceleration, a, namely
TU ¼ @a

2
ck . To observe a temperature of 1� K requires an

acceleration on the order of 1020 m
s2
.

However, we have seen that scaling the energy gap of an
inertial detector allows interaction with precisely the same
field modes in the same thermal state. In our case, a is
simply a scaling constant with units of 1

sec . The factor of

c�1 disappears from the temperature, T ¼ @a
2
k . To encoun-

ter a temperature of 1�K requiresa on the scale of 100GHz.
We also require that the energy gap of the detector is

scaled over a long enough period to allow thermalization.
Experimentally, we imagine a detector which is scaled
between times �1 and �2, and we demand many oscilla-
tions at the constant � frequency E of the detector, within
the interaction time period. This requirement reads �2 �
�1 � E�1. If expressed in ordinary t times and frequen-
cies (in which ~E1 is the initial t-frequency gap of the

detector at t1, etc.), it then reads t2
t1
� eð1=t1 ~E1Þ ¼ eð1=t2 ~E2Þ.

Now, if t1 is taken to be the characteristic time scale
1= ~E1, then thermalization requires t2 � 2:7t1.

In other words, simple analysis suggests that the effect
could be visible on frequency scales in the vicinity of
100 GHz, scaled over a single order of magnitude.

Conclusions.—In contrast to earlier work which at-
tempted to define ‘‘entanglement in time’’ as a new and
different quantity [13], the definition of entanglement we
have used is the standard one—the nonseparability of a
pure state (in this case the vacuum). The implications of
timelike entanglment have not been explored in depth. The
thermal effect we describe here is only the first such
consequence. We speculate, however, that most conse-
quences of ordinary entanglement have a directly analo-
gous interpretation in timelike entanglement. For example,
the no-signaling theorem [14] may be interpreted to forbid
the use of timelike entanglement as a means of communi-
cation with the past. Nevertheless, projecting onto states in
F should collapse the state in P.

It was noted above that the entangled modes we have
described in F-P are the same mode solutions as the
entangled Rindler modes in R-L. In other words,
F-P entanglement is not merely analogous to R-L
entanglement—it is precisely the same entanglement,
viewed in a different region of space-time. Recently, theo-
retical work has focused on manipulating or extracting
vacuum entanglement by interacting with the R-L en-
tangled modes [15–20]—this illustrates ‘‘exotic effects’’
which are in principle allowed by relativistic quantum field
theory. We speculate that due to the dimensional improve-
ment and the lack of need for acceleration, some of these
effects may in fact become experimentally accessible,
when converted to equivalent interactions in F-P.
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