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We show how the time-continuous coherent state path integral breaks down for both the single-site

Bose-Hubbard model and the spin-path integral. Specifically, when the Hamiltonian is quadratic in a

generator of the algebra used to construct coherent states, the path integral fails to produce correct results

following from an operator approach. As suggested by previous authors, we note that the problems do not

arise in the time-discretized version of the path integral.
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Path integrals are widely known for being an alternate
formulation of quantum mechanics, and appear in many
textbooks as a useful calculational tool for various quan-
tum and statistical mechanical problems (e.g., perturbative
expansions, nonperturbative techniques including the in-
stanton method, and effective theories [1–3]). From their
inception, there has been the problem of writing down a
path integral for any system that can be described by a
Hilbert space equipped with a Hamiltonian. One way to
approach this problem is with what is known now as the
generalized coherent state path integral [4,5] which gen-
eralizes the coherent state path integral for a harmonic
oscillator. The key observation with path integration [2]
is that, given a Hamiltonian H, the propagator, e�itH, at

some time t can be broken up intoN slices, ðe�itH=NÞN , and
in between each multiplicative term one inserts an (over-)
complete set of states parametrized by a continuous pa-
rameter. If we take N ! 1, we get the time-continuous
formulation. This formulation of path integrals, applied to
coherent states, has become widely and routinely used in
many areas of physics (see the many papers collected in
[6]), yet despite the many successes of path integrals, they
have been on very shaky mathematical grounds (for a small
‘‘slice’’ of this history, see [7]).

Glauber coherent states [8] are usually understood as the
most classical states associated with the harmonic oscilla-
tor. They obey the classical equations of motion for a
harmonic oscillator and are minimal uncertainty states.
Perelomov and Gilmore [9,10] extended the definition of
coherent states to Lie algebras other than the Heisenberg
algebra (i.e., the harmonic oscillator algebra). Since then,
these ‘‘generalized’’ coherent states have been used in a
number of applications (see [11,12]). In particular, the
coherent states form an overcomplete basis (with a con-
tinuous label) which is a necessary ingredient for the
construction of a path integral. For the harmonic oscillator,
coherent states are represented by a complex number, but
for coherent states constructed with suð2Þ (spin), they are
points on the Bloch sphere S2.

For the case of the harmonic oscillator, it is commonly
known that one can easily go between the normal-ordered
Hamiltonian (all annihilation operators commuted to the
right) and the coherent state path integral [1]; this is due to
the fact that coherent states are eigenvectors of the anni-
hilation operator. For the general coherent state path inte-
gral, the ‘‘classical’’ Hamiltonian in the path integral is just
the expectation value of the quantum Hamiltonian with a
coherent state. This prescription results in some notable
exactly solvable cases, but all such cases involve noninter-
acting terms which are essentially linear in the algebra
generators used to construct the coherent states. When
the Hamiltonian involves terms that are nonlinear in gen-
erators (interactions), this prescription fails, as this Letter
demonstrates.
In previous literature, the spin-coherent state path inte-

gral has sometimes produced (quantitatively) incorrect
results [13–17] unless the time-discretized version is em-
ployed [16,18]. These problems with the time-continuous
path integral were mostly solved by Stone et al. [19] by
identifying an anomaly in the fluctuation determinant
which added an extra phase to the semiclassical propaga-
tor. Kochetov had also found this phase in a general context
[20]. Furthermore, Pletyukhov [21] related the extra phase
in the spin-path integral back to Weyl ordering the
Hamiltonian in the case of the harmonic oscillator (in the
simplest case, Weyl ordering corresponds to symmetrically
ordering annihilation and creation operators). Additionally,
Weyl ordering has been considered in the Bose-Hubbard
case in [22]. Unfortunately, this solution does not explain
the present breakdown under consideration.
In this Letter, we outline another problem with the time-

continuous coherent state path integral. This problem
manifests itself in two simple examples: (i) the spin-
coherent state path integral and (ii) the harmonic oscillator
coherent state path integral (in particular, the single-site
Bose-Hubbard model). The single-site Bose-Hubbard
Hamiltonian is a minimal model that demonstrates the
problem with the normal-ordered path integral. However,
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the problem itself is more general than the toy model
considered here and clearly persists in more complicated
models, including lattice Bose-Hubbard models. We use an
exact method of calculating the partition function mathe-
matically developed by Alekseev et al. [23] (and more
recently used by Cabra et al. [24] for the spin-path integral
with H ¼ Sz), and demonstrate that the exact result differs
from the correct partition function in the cases of both
normal ordering of operators (as prescribed by most text-
books) and when using Weyl ordering (i.e., it cannot be
accounted for with the phase anomaly found by Solari and
Kochetov [18,20] and elaborated on by Stone et al. [19]).

We begin with the coherent state path integral for spin
with the standard SU(2) algebra defined on the operators
fSx; Sy; Szg with ½Si; Sj� ¼ i�ijkSk, and we define our

Hilbert space by taking the matrix representation of the
SU(2) group in (2sþ 1)-by-(2sþ 1) matrices (s being the
spin of the system). Irrespective of the algebra, we can in
general define a Hermitian matrix H that acts on states in
our Hilbert space, and this will be our Hamiltonian.
Usually, H is a polynomial of algebra generators.

If jsi is the maximal state of Sz in our spin-s system, then
we can define spin-coherent states as jni ¼ e�i�Sze�i�Sy jsi
where (�, �) are coordinates on the sphere S2 along the
unit vector n (i.e., a point on the standard Bloch sphere).
These coherent states are overcomplete such that
2sþ1
4�

R
S2 dnjnihnj ¼ 1 where dn ¼ d�dðcos�Þ is the stan-

dard measure on S2. Using this continuous, overcomplete
basis, one can derive the standard path integral for the
partition function for spin fromZ ¼ tre��H in the standard
way [1] discussed in the introduction:

Z0 ¼
Z

Dnð�Þ exp
�
�

Z �

0
d�½�hnð�Þj@�nð�Þi

þ hnð�ÞjHjnð�Þi�
�
: (1)

We call the partition function as given by the time-
continuous path integral Z0 in order to distinguish it from
Z ¼ tre��H since we will find that in general they may not
agree. The path integral is over all closed paths (since it is
the partition function). The first term in the action for
Eq. (1), hnj@�ni, is the Berry phase term and in (�, �)
coordinates �hnj@�ni ¼ �isð1� cos�Þ@��.

We assume hnjHjni ¼ Hðcos�Þ for some function HðxÞ
(this is true if and only if H is diagonal). This puts the �
dependence of the action solely in the Berry phase term of
the action. We then integrate the Berry phase term by parts;
the boundary term is just ��ð1� cos�ð0ÞÞ with �� ¼
�ð�Þ ��ð0Þ ¼ 2�k for any integer k and cos�ð�Þ ¼
cos�ð0Þ since our paths are closed. We must sum over the
different topological sectors defined by the integer k (i.e.,
how many times � wraps around the sphere). Thus, our
only� dependence is multiplying d cos�

d� from integrating by

parts, and we use standard identity for functional integralsR
D�e�i

R
�

0
d��ð�Þfð�Þ ¼ �ðfÞ, to get that cos� must be

constant (i.e., d cos�
d� ¼ 0). This � function allows us to do

the path integral over Dðcos�Þ, except for the initial value
which we call x :¼ cos�ð0Þ. Taking all of this into account,
the path integral can then be written as

Z0 ¼ X1
k¼�1

Z 1

�1
dxe2�iksð1�xÞ��HðxÞ: (2)

The sum over k can be evaluated as a sum of delta functions
of the form �ðsð1� xÞ � nÞ for all integers n. Since x is
in the interval �1 to þ1, only finitely many n contribute
(n ¼ 0 to n ¼ 2s to be exact). We can rewrite the sum over
n as a sum over m :¼ s� n and we get the answer (drop-
ping overall constants)

Z0 ¼ Xs
m¼�s

e��Hðm=sÞ: (3)

Equation (3) looks very promising, but Hðm=sÞ is not the
same as hmjHjmi. First let us see where it does work. Take
the simple Hamiltonian H ¼ Sz, then hnjHjni ¼ s cos�,
and thus HðxÞ ¼ sx. This immediately yields

Z0
H¼Sz

¼ Xs
m¼�s

e��m; (4)

and it is easily calculated (in operator language) that
Z0

H¼Sz
¼ ZH¼Sz . The two methods agree for the particular

Hamiltonian H ¼ Sz (the case considered by Cabra et al.
[24]). On the other hand, if we take H ¼ S2z and s ¼ 1, we
can evaluate hnjS2z jni ¼ 1

2 ðcos2�þ 1Þ, from which we

have

HðxÞ ¼ 1
2ðx2 þ 1Þ: (5)

Thus, Z0
H¼S2z

¼ 2e�� þ e��=2, but this conflicts with

ZH¼S2z
¼ 2e�� þ 1 by more than just a multiplicative

constant. Thus, we have Z0
H¼S2z

� ZH¼S2z
for s ¼ 1, and

in fact Z0
H¼S2z

� ZH¼S2z
for all s > 1=2.

Importantly, the two methods agree for any Hamiltonian
when s ¼ 1=2. This comes from the fact that any (diago-
nalized) Hamiltonian for a two state system (s ¼ 1=2) can
be written as H ¼ aþ bSz (in fact H ¼ S2z ¼ 1=4), and
the above method gives Z0 ¼ Z when H ¼ aþ bSz.
Also, if we take the Hamiltonian H ¼ S2z=s

2, then when
s � 1 Eq. (3) reproduces the correct result. This is a
general result for Hamiltonians that are finite polynomials
of Sz=s, and suggests that ‘‘semiclassically’’ (i.e., s tends to
infinity), we will still arrive at sensible results.
Agreement can be forced by considering HðxÞ ¼ x2

instead of Eq. (5), but this corresponds to replacing Sz
with hSzi in the Hamiltonian instead of just considering
hHi. In the H ¼ S2z case, it is the difference between
considering hS2zi and hSzi2; the latter gives correct results.
To motivate looking for this same issue in a system with

the Weyl-Heisenberg algebra (i.e., the harmonic oscillator
algebra), it is known [25] that one can contract uð2Þ [since
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we constructed our coherent states for spins with suð2Þ]
into the Weyl-Heisenberg algebra by considering uð2Þ ¼
spanfS0; Sx; Sy; Szg ¼ uð1Þ � suð2Þ, where we define

½S0; Si� ¼ 0. Then define the operators J0 :¼ S0, J1;2ð�Þ :¼
�Sy;x, and J3ð�Þ :¼ S0 þ ��2Sz to get the commutation

relations ½J3; J1;2� ¼ �iJ2;1, ½J1; J2� ¼ �i�2J3 þ iJ0, and
½J0; Ji� ¼ 0. If we let � ! 0, we recover exactly the
Weyl-Heisenberg algebra: h4 ¼ spanf1; x; p; ayag with
½x; p� ¼ i, ½aya; x� ¼ �ip, ½aya; p� ¼ ix. Observe that
Sz is related to a

ya in this contraction, so we might suspect
that terms quadratic in aya give problems like those found
with S2z in the spin-coherent state path integral.

A Hamiltonian that uses the Weyl-Heisenberg algebra to
construct its coherent states is the Bose-Hubbard model.
For a single site, we can write

H ¼ ��nþU

2
nðn� 1Þ; (6)

where n ¼ aya and the a (ay) is the annihilation (creation)
operator for the algebra ½a; ay� ¼ 1. The form nðn� 1Þ ¼
ayayaa comes from the normal ordering required from a
path integral of the form

Z0 ¼
Z
D2zexp

�
�
Z �

0
d�

�
1

2
ðz� _z� _z�zÞ��jzj2þU

2
jzj4

��
:

(7)

We can solve this path integral with the same method used
to obtain Eq. (3) in the spin-coherent state path integral.
Let z ¼ ffiffiffi

n
p

ei�, so that the measure becomes D2z ¼
DnD� and the action becomes S ¼ R

d�ðin _���nþ
U
2 n

2Þ. Integrating by parts on the n _� term then integrating

over D� will fix n to be constant, and the boundary term
will fix n to be an integer. Since n is radial, it can only be
positive so we directly obtain

Z0 ¼ X1
n¼0

e�n��ðU=2Þn2�: (8)

But this differs from the partition function that we can
easily calculate in operator language:

Z ¼ X1
n¼0

e�n��ðU=2Þnðn�1Þ�: (9)

We see a similar problem to that of the spin-coherent state
path integral here. To see it explicitly, for U � 1, we have

Z0 � 1þ e��U=2 þ � � � , butZ� 1þ e� þ e2��U þ � � � .
With different asymptotics, Z and Z0 are different expres-
sions. Note that if we let� ! �þ U

2 inZ
0, that we will get

the same result. This substitution for � corresponds to
replacing n in Eq. (6) by hni ¼ jzj2 when writing down
our action (so instead of hn2i, one gets hni2).

We now compare this to the semiclassical result. Still
considering Eq. (6), let us change our algebra slightly to
incorporate a small parameter (akin to the standard @ ! 0

for normal semiclassics): h; h�1 is the representation
index (called 	 in [20]). We note here that different h’s
change the coherent states jzi in the following way: if
z ¼ 1ffiffi

2
p ðuþ ivÞ, then u ¼ q=c, v ¼ p=d, and h ¼ @=ðcdÞ

(and ½a; ay� ¼ h). We have used q and p as the standard
position and momentum for the harmonic oscillator.
Up until now we have been considering h ¼ 1.
We can write the propagator between two coherent states

jzii and jzfi using a Hubbard-Stratonovich transformation

and the propagator for the harmonic oscillator:

Kðz�f;zi;tÞ¼hzfje�iHT=hjzii

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iT

2�Uh

s Z
d!eð1=hÞ�!þð1=2Þi!Tþði=8ÞUhT; (10)

where we have defined

�! ¼ z�fzie
ið!þ�ÞT þ iT

2U
!2 � 1

2
ðjzij2 þ jzfj2Þ:

Equation (10) is an exact statement.
In order to contrast Eq. (10) with semiclassics, we write

out the propagator in path integral notation [20]

Kðz�f; zi;TÞ ¼
Z z�ðTÞ¼z�

f

zð0Þ¼zI

D2z expf�½z; z��=hg;

where � ¼ �þ S,

� ¼ 1

2
½z�fzðTÞ þ z�ð0ÞzI � jzfj2 � jzIj2�;

S ¼ 1

2

Z T

0
dtðz _z� � z� _zÞ � i

Z T

0
dthzjHjzi:

Performing the standard semiclassical analysis and
algebra (see [19,20]) the semiclassical propagator takes
the form

Kscðz�f; zi;TÞ ¼
X
!

�
iT

hU

�
1=2

�
1

h

@2�!

@!2

��1=2

	 exp

�
1

h
�! þ i

2
ð!þ�ÞT � i�

�
; (11)

where the sum is over solutions to the consistency equation

given by @�!

@! ¼ 0 or ! ¼ �Uz�fzie
ið!þ�ÞT , and we have

defined � ¼ 1
2 ð�þ 2!ÞT. The term � comes from the

fixing of the fluctuation determinant anomaly described in
detail by Stone et al. [19] for the SU(2) case. However, if
we try to get Eq. (11) by using the method of steepest
descent on Eq. (10) with h ! 0, we will not get the same
result. This is because of what has been shown by others
[20,21]: that the semiclassics will give results consistent
with the Weyl ordering of the Hamiltonian (naively order-
ing all a and ay’s symmetrically). The usual normal-
ordered Hamiltonian takes the form (inserting h’s) H ¼
��nþ U

2 nðn� hÞ while the Weyl ordered Hamiltonian

takes the form (up to a constant)HW ¼ ��nþ U
2 nðnþ hÞ.
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If we derive Eq. (10) for HW , we will find the steepest
descent exactly agrees with Eq. (11) just as expected
[20,21].

While the semiclassical result is not a new one, it shows
that the path integral is not dealing with the same
Hamiltonian. Unfortunately, our exact calculation of Z0
[see Eq. (8)] suggests that the path integral is dealing with
H0 ¼ ��nþ U

2 n
2 while semiclassics suggests it is deal-

ing with HW ¼ ��nþ U
2 nðnþ 1Þ (going back to h ¼ 1).

These two methods differ but both are not dealing with the
Hamiltonian under consideration, Eq. (6). In the case of the
Weyl ordered Hamiltonian, we can write our original
Hamiltonian in Eq. (6) as H ¼ HW �Un which is Weyl
ordered (up to a constant). This ordering can be used to
modify the path integral by an extra term: �Ujzj2. This
correction to the path integral suggested by Weyl ordering
does not fix the exact calculation of Z0 as can be easily
shown, but it does motivate an ad hoc correction to the path
integral to ‘‘fix’’ our exact calculation. We use the follow-
ing action:

S ¼
Z

dt

�
��jzj2 þU

2
jzj2ðjzj2 � 1Þ

�
: (12)

This action is constructed by just changing the operator n
to a function jzj2; while this gives correct results with the
method which gives Eq. (8), there is no a priori reason to
suspect this of being the action. Similarly, if in the spin-
coherent state path integral, we replace the operator Sz with
its expectation value hnjSzjni everywhere, we will get the
correct result. This means, in particular, for H ¼ S2z that
instead of hS2zi in the spin-path integral we have hSzi2. In
general, if one substitutes the generators of the coherent
states in the Hamiltonian with their expectation value, one
obtains the correct result for Z with the methods used to
derive Eqs. (3) and (8).

Corrections aside, a simple way to see what has gone
wrong is to return to Eq. (5). This HðxÞ function cannot
achieve the value 0, but H ¼ S2z clearly has such an eigen-
value. This is due to the fact that for higher dimensional
representations of SU(2) not every eigenvector of Sz can be
rotated into another with a standard SU(2) rotation. On the
other hand, the coherent states we used are a complete set
for even higher dimensional representations, so in princi-
ple, we should not lose any information about the m ¼ 0
state. Continuity in n seems to be the culprit: HðxÞ came
from a time-discretized form (between time slices j and
jþ 1) hnjþ1jS2z jnji, and we have hnjS2z j � ni ¼ 0, so

hnjþ1jS2z jnji can attain zero, but not for any paths that

are ‘‘close’’ to each other (i.e., nj 
 njþ1) as the continu-

ous time path integral assumes. As such, the discrete time
path integral (before a continuity assumption is imposed)
can unambiguously give the correct results to a calculation.

To conclude, in the time-continuous formulation of
the path integral, neither the action suggested by
Weyl ordering nor the action constructed by normal order-
ing gives correct results when evaluating Z via path
integrals.
We thank Michael Levin for stimulating conversations.
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