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We derive a phenomenological theory of current-induced staggered magnetization dynamics in

antiferromagnets. The theory captures the reactive and dissipative current-induced torques and the

conventional effects of magnetic fields and damping. A Walker ansatz describes the dc current-induced

domain-wall motion when there is no dissipation. If magnetic damping and dissipative torques are

included, the Walker ansatz remains robust when the domain wall moves slowly. As in ferromagnets, the

domain-wall velocity is proportional to the ratio between the dissipative torque and the magnetization

damping. In addition, a current-driven antiferromagnetic domain wall acquires a net magnetic moment.
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In ferromagnets, a spin-polarized current can be used
to manipulate magnetization via the exchange interaction.
A misalignment between the polarization of the current
and the local magnetization direction causes a spin-transfer
torque (STT) on the magnetization because of noncollinear
spins that precess within the ferromagnet. This effect was
first theoretically predicted by Slonczewski and Berger [1]
and has since garnered abundant experimental evidence
(for a review, see Ref. [2]). The STT effect is the reciprocal
process of the charge currents that are induced by a time-
varying magnetic texture [3]. A promising commercial
application of the STT effect utilizes the spin-polarized
currents to switch the ferromagnetic layers in spintronic
devices.

Antiferromagnets are ordered spin systems in which the
magnetic moments of all electrons in each unit cell com-
pensate for each other in equilibrium. Recent theoretical
[4,5] and experimental [6] works indicate that current-
induced torque effects also appear in antiferromagnets.
Antiferromagnets also share another transport property
with ferromagnets: namely, the anisotropic magnetoresis-
tance (AMR) effect [7]. The antiferromagnetic AMR effect
allows for a detailed experimental study of the current-
induced switching of the antiferromagnetic layers and
the motion of the spatially dependent antiferromagnetic
textures. Therefore, antiferromagnets may be an alternative
to ferromagnets for use in spintronics devices.

Magnetization dynamics in ferromagnets is described by
the Landau-Lifshitz-Gilbert (LLG) equation, which has
been extended to include STT [8]. In magnetic textures, a
spin-polarized current contributes two different terms to
the LLG equation of motion: a reactive torque term and a
dissipative-torque term [8]. The reactive torque term pre-
serves the macroscopic time-reversal invariance of the
equation. This term arises from the out-of-equilibrium
spin density that is induced by drifting electrons, which
have spins that are adiabatically guided by the magnetic
texture. The effect of the reactive STT on the staggered

magnetization in antiferromagnets was recently discussed
in Ref. [5]. The dissipative torque breaks the time-reversal
symmetry and arises from the spin-dephasing processes.
In the present Letter, we develop a general phenome-

nology that describes the coupled dynamics of currents
and the staggered order parameter in isotropic antiferro-
magnets to the lowest order in spin-texture gradients
and precession frequency. The antiferromagnet is treated
within the exchange approximation. For the lowest order in
relativistic interactions, the exchange forces only depend
on the relative orientation of the spins. This approximation
is a good starting point for many conventional ferromag-
nets and antiferromagnets [9], including disordered sys-
tems. In these systems, impurities couple to the spin
degrees of freedom through random magnetic moments
or spin-orbit coupling, but impurity averaging restores
the spin-rotational and sublattice symmetries. We include
the effects of damping, external magnetic fields, and reac-
tive and dissipative-torque effects. We apply our theory to
an antiferromagnetic domain-wall system, and find an
analytic solution in the low current-density regime. Similar
to ferromagnets, we find that the domain-wall velocity is
proportional to the ratio between the dissipative-torque and
a bulk damping coefficient. An interesting consequence of
the current-induced motion is that the domain wall devel-
ops a net magnetic moment. Current-induced staggered
magnetization dynamics can thus be observed in two
ways: via the AMR effect and via the out-of-equilibrium
net magnetic moment.
Our phenomenology is based on the theory of insulating

antiferromagnets [10], which is extended to take into ac-
count the current flow. An important aspect of our phe-
nomenology is the exchange approximation that implies
that the total energy is invariant during the simultaneous
rotation of all the magnetic moments [10]. Subsequently,
when considering the current-induced domain-wall mo-
tion, we include the magnetic anisotropy phenomenologi-
cally in the free energy, considering that these anisotropy
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energies are very small, e.g., on the scale of the critical
temperature.

For clarity, we restrict our treatment to systems in which
each unit cell in the crystal lattice contains two equivalent
magnetic sites. In this situation, the antiferromagnet con-
sists of two sublattices with magnetic moment densities
m1ðr; tÞ and m2ðr; tÞ, such that the total magnetization is
mðr; tÞ ¼ m1ðr; tÞ þm2ðr; tÞ and the antiferromagnetic
order parameter is lðr; tÞ ¼ m1ðr; tÞ �m2ðr; tÞ. In equilib-
rium and in the absence of magnetic fields and textures,
m vanishes, and l is finite and homogenous. In the follow-
ing, we allow the antiferromagnet to become distorted into
metastable textured states, such as domain walls or vorti-
ces, but we require that the texture is smooth on the scale of
relevant microscopic length scales. The texture is parame-
trized by a slowly varying unit vector nðr; tÞ � lðr; tÞ=l
(l � jlðr; tÞj). Assuming stiff antiferromagnetic ordering,
the longitudinal dynamics of l can be neglected so that the
slow dissipative dynamics of the system are fully described
by the directional Néel field nðr; tÞ along with the trans-
verse magnetizationmðr; tÞ, which physically corresponds
to the small relative canting of the magnetic sublattices.
Constructing the phenomenological equations of motion
well below the Néel temperature, we thus impose the
constraints jnj ¼ 1 and m � n ¼ 0.

In addition to rotational invariance, the exchange ap-
proximation requires that the free energy and the equations
of motion are invariant under the exchange of the two
sublattices [10], i.e., that they are invariant under the trans-
formations nðr; tÞ � �nðr; tÞ and mðr; tÞ � mðr; tÞ. The
leading-order free energy that satisfies the appropriate
symmetry requirements is thus [10] F ¼ R

dr½am2=2þ
A
P

i¼x;y;zð@inÞ2=2�H �m�. Here, we expanded the free

energy to the second order in the gradients and the mag-
netization field mðr; tÞ, which is coupled to an external
magnetic field H. The equations of motion for mðr; tÞ and
nðr; tÞ are found by expanding their slow dynamics to
the lowest order in the effective fields fn � ��nF ¼
An� ðr2n� nÞ �mðH � nÞ and fm � ��mF ¼
�amþ n� ðH� nÞ. To enforce the constraints jnj ¼ 1
and m � n ¼ 0, we calculated the variational derivatives
�mF by varyingm normal to a fixed n and �nF by parallel
transporting m on the sphere that is parametrized by n.
In the absence of electric currents, we obtain [11]

_n ¼ ð�fm �G1 _mÞ � n; (1)

_m ¼ ð�fn �G2 _nÞ � nþ ð�fm �G1 _mÞ �m; (2)

where � is the effective gyromagnetic ratio. The dissipa-
tion power P � _n � fn þ _m � fm ¼ ðG1=�Þ _m2 þ ðG2=�Þ
_n2 � 0 requires thatG1;2=� � 0. The nondissipative equa-
tions with G1;2 ¼ 0 are derived in the linearized regime in

Ref. [10]. In addition to the appending dissipation, we have
also added the second term in Eq. (2), which is quadratic
in small deviations from the equilibrium, to enforce the

constraint m � n ¼ 0. Note that such a term naturally ap-
pears if one constructs the antiferromagnetic equations
of motion out of the ferromagnetic LLG equations of
the constituent magnetic sublattices. Equations (1) and
(2) can be reduced to a single equation for the Néel field
(without dissipation): n� €n¼�2an�½Ar2n�HðH �nÞ=
aþ _H�n=�a��2�ðH �nÞ _n. This equation agrees with
the equation that is derived in Ref. [9] from the
Lagrangian density L¼ð _n=��H�nÞ2=2a�AðrnÞ2=2.
We also make use of the linearized equations in the

Landau-Lifshitz form:

_n¼ ~�ðfm�nþG1fnÞ; _m¼ ~�ðfn�nþG2fmÞ; (3)

where ~� � �=ð1þG1G2Þ. The Onsager reciprocity rela-
tions between the two fields require the gyromagnetic
ratios to be the same in the two equations (see below).
Equations (1) and (2) describe the evolution of an elec-

trically open antiferromagnet. Next, we include the effect
of itinerant electrons on the long-wavelength dynamics
of nðr; tÞ and mðr; tÞ by adding torque terms that arise
from the currents that are induced by an external electric
field E. To this end, we are guided by the rotational
symmetry requirements and the Onsager reciprocity
relations. The Onsager reciprocity relations apply to a
system that is described by several parameters fqiji ¼
1; . . . ; Ng for which the rate of change _qi is induced by
the thermodynamic forces fi � �@qiF, and state that

the off-diagonal linear response coefficients in the equa-
tions _qi ¼ P

N
j¼1 Lijfj are related by LijðH;MÞ ¼

�i�jLjið�H;�MÞ, where �i ¼ 1 (�i ¼ �1) if qi is even

(odd) under time reversal. Here,M represents any possible
equilibrium magnetic order. The fields that describe
the collective magnetic dynamics in the antiferromagnet
are nðr; tÞ and mðr; tÞ, and the associated conjugate forces
are fn and fm, respectively. In the diffusive regime, the
charge transferred by the current-density J is conjugate
to the electric field such that fq ¼ E. The response coef-

ficients that are needed are the response matrices Ln;q and

Lm;q, which describe the dynamics of n and m that are

induced by the electric field. Because the magnetization
is odd and the charge is even under the time reversal,
Onsager’s theorem implies that LniðmiÞ;qjðn;mÞ ¼
�Lqj;niðmiÞð�n;�mÞ, where Lq;nðmÞ describes the charge

currents that are pumped by fn (fm), and the (� n, �m)
arguments denote an equilibrium texture.
To derive the STT terms, it is convenient to begin

by phenomenologically constructing the magnetically
pumped charge current density Jpump, which yields
Lq;nðmÞ, and then invoke Onsager’s theorem to obtain

LnðmÞ;q. For the lowest order of the space-time gradients

and the magnetization fieldm, we can write three pumping
terms that satisfy the appropriate exchange and spatial
symmetries: n � ð _m� @inÞ, _n � @in, and n � ð _n� @imÞ.
However, because the last term is quadratic in the small
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deviations from an equilibrium state (in the absence of
magnetic fields), we disregard it in the following. Thus,
the leading-order phenomenological expression for the
pumped charge current density is as follows:

J
pump
i =� ¼ �n � ð _m� @inÞ þ � _n � @in

¼ ~�½ð�þG1�Þ@in � fn
þ ð��G2�Þn� @in � fm�; (4)

where we have utilized Eq. (3) and have scaled the current
density with the conductivity �. Here, � (�) is a phenome-
nological parameter. Later, it becomes clear that � (�)
parametrizes the adiabatic (nonadiabatic) torque because
the term is even (odd) under time reversal. Equation (4)
yields the response coefficients Lqi;nj ¼ �~�ð�þG1�Þ
@inj and Lqi;mj

¼ �~�ð��G2�Þðn� @inÞj. Using the

Onsager reciprocity relations and Ohm’s law for the
drift current (J ¼ �E), leads to the STT terms
�n ¼ ~�ð�þG1�ÞðJ � rÞn and �m ¼ �~�ð��G2�Þn�
ðJ � rÞn for the Néel and the magnetization field, respec-
tively, which are added on the right side of the equations
of motion in Eq. (3). Transforming these torques back to
the LLG form of the equations, i.e., Eqs. (1) and (2), yields
the following:

_n ¼ ð�fm �G1 _mÞ � nþ ��ðJ � rÞn; (5)

_m ¼ ½�fn �G2 _nþ ��ðJ � rÞn� � nþ �nl: (6)

�nl ¼ ð�fm �G1 _mÞ �m� ��½m � ðJ � rÞn�n are the
simplest nonlinear terms that are added here to enforce
the constraint m � n ¼ 0. We disregard such higher-order
terms in the following.

From now on we use the simplified notation for the
effective forces [11], which allows us to more readily
solve for m in terms of n. Combining Eqs. (5) and (6),
we see that the magnetization field is fully determined by
the order parameter n and its dynamics:

m ¼ 1

a

�
n�Hþ 1

~�
_n�G1fn�ð�þG1�ÞðJ �rÞn

�
�n:

(7)

Substituting this into Eq. (6) allows us to derive a closed
equation for the Néel field to the linear order in the out-of-
equilibrium deviations m, @tn, J, and H [12]:

€n=~� ¼ �n� _HþG1
_fn þ ð�þG1�Þð _J � rÞn

þ a½�fn �G2 _nþ ��ðJ � rÞn�: (8)

Equations (4)–(8) are our main results, which describe
a general phenomenological theory of weakly excited
current-induced dynamics in conducting antiferromagnets
and charge pumping that arises from moving textures.
The reactive torque in Eq. (8), which is proportional to
(�þG1�), was first found in Ref. [5]. The dissipative-
torque term, which is proportional to a�, and the effects of

magnetization damping are new terms that have not been
derived before. The consideration of the charge pumping
that occurs when moving antiferromagnetic textures is
also new.
As an application of our theory, we consider an anti-

ferromagnetic domain-wall system and study the current-
induced domain-wall motion. For clarity, we set the
external magnetic field to equal zero from this point of
the Letter on. Domain walls can be created in systems with
anisotropy, which is added phenomenologically to the free
energy as follows: F½m;n� ! F½m;n� þW½n�, where
W½n� ¼ R

drðK?n2y=2� Kzn
2
z=2Þ is the anisotropy energy

(K?, Kz > 0). A local minima of the above energy func-
tional is a Néel wall that rotates in the xz plane, where
the local magnetization direction is nx ¼ 1= coshðz=�wÞ
and nz ¼ tanhðz=�wÞ. �w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

A=Kz

p
is the domain-wall

width. This equilibrium domain-wall texture is denoted
by n0ðr; tÞ below.
In the following, we study how the domain wall moves

in response to a current along the z axis (J ¼ Jẑ). Let us
first consider the case of no magnetization damping and
� ¼ 0. In this case, it follows from Eqs. (5) and (6) that
mðr; tÞ ¼ 0 and nðr; tÞ ¼ n0½z� rwðtÞ� is an exact solution
of the equations, with the domain-wall velocity _rw ¼
���J. By including the magnetization damping and the
dissipative torque, a local magnetic moment density devel-
ops. The torque �m ¼ �~�Jð��G2�Þn� @zn induces
a magnetic moment density along the y axis that should
eventually approach a finite value due to the opposite
acting damping term G2fm in Eq. (3). Thus, to find a
stationary solution for Eqs. (5) and (6), we use the ansatz
nðr; tÞ ¼ n0½z� rwðtÞ� andmðr; tÞ ¼ m0ðtÞn� @zn. Here,
m0ðtÞ parametrizes the magnitude of the local magnetic
moment density. Substituting these two expressions into
Eqs. (5) and (6), produces the following equations for the
two parameters rwðtÞ and m0ðtÞ:

_r w ¼ ~�½am0 � ð�þG1�ÞJ�; (9)

_m0

~�
¼ ðG2�� �ÞJ �G2a

�
1þ _rwnz

~�G2a�w

�
m0: (10)

The second term inside the last parenthesis in Eq. (10)
is position dependent because of nz. When this term is
negligible, the ansatz becomes a good approximation
of Eqs. (9) and (10). This low current-density regime
corresponds to systems for which the characteristic intrin-
sic relaxation time ð~�G2aÞ�1 of the antiferromagnetic
system is much smaller than the time scale �w= _rw; i.e.,
the domain wall moves a small distance as compared
to the domain-wall width during the relaxation time. In
this regime, m0 approaches a finite stable value of m0 ¼
�ð��G2�ÞJ=ðG2aÞ, and the domain wall moves at a
constant velocity _rw ¼ ���J=G2. Similarly to that for
ferromagnets, the velocity is proportional to the ratio
between the dissipative torque and a Gilbert damping
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coefficient. In contrast to ferromagnets, this result is inde-
pendent of the uniaxial anisotropyK? such that the Walker
ansatz has a much wider range of applicability. An inter-
esting consequence of the current-induced domain-wall
motion is that the system develops a finite magnetic mo-
ment in the domain-wall region. This effect may be an
alternative to the AMR effect for the measurement of
domain-wall motion.

To verify that the system approaches the above station-
ary solution in the relevant regime, we conducted a micro-
magnetic simulation of a one-dimensional system based on
Eqs. (5) and (6). For the numerical calculation, we wrote
the equations in a dimensionless form by scaling the z axis
with the lattice constant al and the time axis with ð~�A�Þ�1.
Here, A� ¼ A=ðla2l Þ. We considered a domain-wall system

with a domain-wall width of �w ¼ 20al. The anisotropy
and damping parameters are al=A� ¼ 10, Kz=ðlA�Þ ¼
ð20Þ�2, K?=ðlA�Þ ¼ 0:1, and G1l ¼ G2=l ¼ 0:01. For the
STT torque parameters we used Jð�þG1�Þ=ðalA�Þ ¼ 0:1
and Jð��G2�Þ=ðalA�lÞ ¼ 0:001. With these values, the
stationary solution implies that m�

0 ¼ m0=ðallÞ will ap-

proach �0:01 and that the wall will move a distance of
2al during the relaxation time ð~�G2aÞ�1. We therefore
expect the system to be in the relevant regime for which
the stationary solution is valid.

Figure 1 shows the micromagnetic simulation of the
above system. We see that the domain-wall velocity fol-
lows Eq. (9) nearly perfectly and that velocity and m0

approach the expected stationary values. It should be noted
that our ansatz breaks down when ð~�G2aÞ�1 is not much
smaller than �w= _rw; however, a more detailed study of
this regime is beyond the scope of this manuscript.

The typical values of the �=G ratio in antiferromagnets
is an interesting issue for future experiments. This ratio

can be probed by measuring the domain-wall velocity as a
function of the current density or by measuring the recip-
rocal process, which is voltage that is induced by a moving
domain wall.
In conclusion, we have derived a general phenomeno-

logical theory of current-induced dynamics in antiferro-
magnets and have applied the theory to the study of
current-induced domain-wall motion. We found that the
domain wall developed a net magnetic moment during the
current-induced motion and that the domain-wall velocity
was proportional to the ratio between the dissipative-
torque parameter and a damping parameter.
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FIG. 1 (color online). The blue line shows the domain-wall
velocity, which was determined using a micromagnetic simula-
tion, as a function of time when a current is applied at t ¼ 0.
The velocity follows the analytic expression in Eq. (9) and ap-
proaches the stationary value _rw ¼ ���J=G2. Inset: The time
evolution of m0. The parameter approaches the stationary value
m0 ¼ �ð��G2�ÞJ=ðG2aÞ. All of the results are given in dimen-
sionless quantities. a� ¼ al=A�, and p� ¼ Jð�þG1�Þ=ðalA�Þ.
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