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Thermal transport measurements have been made on the Fe-based superconductor Lu2Fe3Si5
(Tc � 6 K) down to a very low temperature Tc=120. The field and temperature dependences of the

thermal conductivity confirm the multigap superconductivity with fully opened gaps on the whole Fermi

surfaces. In comparison toMgB2, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat conduction

in the mixed state. The results can be interpreted as a consequence of the unequal weight of the Fe

3d-electron character among the distinct bands.
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Multigap superconductivity (MGSC) is the existence of
gaps with significantly different magnitude on distinct
Fermi surfaces (FSs). This phenomenon has been realized
in a wide variety of materials [1–5], pointing to its univer-
sality underlying the superconductivity. One consequence
of the MGSC is the ability to excite low-energy quasipar-
ticles (QPs) due to the presence of the small gap, providing
unusual features in the mixed state. Even though theMGSC
has been extensively studied so far, the study has been
mainly focused on the explanation for the anomalous prop-
erties. The recent discovery of the iron-pnictide supercon-
ductors [6], however, has offered further insight into the
MGSCbecause electronic interactions andmultiband struc-
ture are essential for the pairing mechanism [7]. In that
sense, a question of how the electronic correlations affect
on the MGSC is a fascinating issue to be addressed, which
could not be examined onMgB2. Unfortunately, the lack of
high-quality samples and/or the high upper critical field
prevent detailed studies of the MGSC in iron pnictides [7].

Lu2Fe3Si5 is an another example of the Fe-based multi-
gap superconductor with Tc � 6 K [8], which crystallizes
in the tetragonal structure consisting of a quasi-one-
dimensional iron chain along the c axis and quasi-two-
dimensional iron squares parallel to the basal plane [9].
Band calculations predict that FSs consist of two holelike
bands and one electronlike band, and each band has a
contribution from the Fe 3d electrons [8]. In the holelike
bands, some parts of the FSs have the different dimension-
ality reflecting the crystal structure [8]. Importantly, the Fe
3d electrons are responsible for the superconductivity, as
suggested by the absence of superconductivity in the iso-
electronic Lu2Ru3Si5 and Lu2Os3Si5 [10]. Therefore,
Lu2Fe3Si5 stands as the rare multigap superconductor
with the d electrons in between the p-electron system
(e.g., MgB2 [1]) and the f-electron system such as
PrOs4Sb12 [3], providing a unique opportunity to study
the MGSC in the moderately correlated electron system.

The multigap superconductivity of Lu2Fe3Si5 is first
observed by the specific heat measurement down to 0.3 K

under zero field [8]. It is of interest to further elucidate the
MGSC by the thermal conductivity measurements down to
lower temperature in the vortex state, because thermal
conductivity is sensitive to the light carrier band which is
expected to strongly affect low-energy QP excitations. The
absence of the nuclear Schottky contribution is another
advantage of this technique.
In this Letter, we report on the thermal transport mea-

surements of single crystalline Lu2Fe3Si5 down to Tc=120.
Our detailed results of the thermal conductivity in the
mixed state confirm the MGSC in Lu2Fe3Si5. Moreover,
from a comparative study with MgB2, Lu2Fe3Si5 reveals
the significantly enhanced heat conduction as a conse-
quence of the unequal weight of the Fe 3d-electron char-
acter among the distinct bands.
Single crystals were grown by the floating-zone method

[11]. The sample was polished with a lapping paper down
to a size of 1:40� 1:12� 0:28 mm3 to obtain the smooth
surfaces. The one-heater-two-thermometer steady-state
method was used to measure thermal conductivity. The
heat current q was aligned along the [001] direction, and
the magnetic field is applied parallel to the ab plane. The
thermal contacts with a resistance of �10 m� were made
by using a spot welding technique.
Figure 1 shows the temperature dependence of the ther-

mal conductivity divided by temperature �ðTÞ=T under
zero field. An arrow denotes the superconducting transition
temperature Tc � 6 K. As is clearly seen, �ðTÞ=T shows a
kink at Tc followed by a steep decrease with decreasing
temperature. On further cooling, a hump structure appears
around 3 K. The decrease of �ðTÞ=T below Tc attributes to
the reduction of the QP density by opening the gaps. On the
other hand, the hump structure originates from an en-
hanced phonon mean-free path due to the condensation
of electronic scattering centers. In fact, a similar enhance-
ment of the phononic conductance (called phonon peak)
is also observed in various materials such as Nb [12] and
Pb [13]. The inset of Fig. 1 shows a �=T vs T2 plot.
Since the measured � contains both electron and phonon
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contributions, it is necessary to separate to each part as � ¼
�e þ �ph. Below 0.15 K, �=T is well described by a

relation of �=T ¼ �0=T þ bT��1 with �0=T ¼ 0:000�
0:005 W=K2 m, b¼0:11W=K2:8m, and�� 1:8. Here, we
should note that the conventional T3 dependence of �ph

dominated by the ballistic phonon scattering fails to repro-
duce our result. The lower power of �ph with �� 1:8 can

be attributed to either the specular reflection of the phonon
or the phonon scattering off the electrons [14–16]. The
former is probable because of the smooth surfaces of our
sample, while the latter seems to be unlikely in the super-
conducting state. The negligibly small �0=T in the zero
temperature limit clearly indicates that Lu2Fe3Si5 is a fully
gapped superconductor consistent with the specific heat
measurement [8].

Figure 2 shows the field dependence of �ðHÞ=T at
several temperatures. For T � 1:0 K, �ðHÞ=T takes a
minimum at low fields and then increases with field. In
general, the minimum of �ðHÞ=T is explained as the result
of the decrease of �ph due to the vortex scattering concom-

itant with the increase of �e resulting from the increase of
the delocalized QP density [2,17,18]. Remarkably, for
T < 1:0 K, �ðHÞ=T shows a rapid increase and reaches
almost half of the normal-state value �n=T already
at low fields (�0H < 1 T). Here, �n=T is estimated
from the Wiedemann-Franz law via �n=T ¼ L0=�0 ¼
0:325 W=K2 m, where L0 ¼ 2:44� 10�8 W�=K2 is the
Lorenz number, and �0 ¼ 7:5 ��cm is the residual re-
sistivity. It is of interest to compare our results with several
superconductors. The inset of Fig. 2 depicts the normalized
�=�n at 0.1 K plotted against H=Hc2 with the data for Nb
[17], MgB2 [18], and UPt3 [19]. Here, the phonon thermal
conductivity �ðH ¼ 0Þ is subtracted from �=�n, and the
upper critical field of �0Hc2 ¼ 6:4 T is obtained from
Ref. [20]. The variation of �=�n for Lu2Fe3Si5 is in dra-
matic contrast with the behavior of the fully gapped s-wave
superconductor Nb [17], in which small fields hardly affect

�=�n. By contrast, in nodal superconductor UPt3, the
delocalized QPs induced by the Doppler shift produces
the remarkable increase of �=�n. The strongly enhanced
� of Lu2Fe3Si5 is a clear indication of either a nodal gap or
nodeless multiple gaps. However, the nodal gap is ruled out
by the absence of the �0=T term.
On the other hand, one immediately notices that

Lu2Fe3Si5 shares a striking resemblance with MgB2,
namely, a rapid increase of �=�n at low fields and a
saturation behavior at high fields, although �=�n for
Lu2Fe3Si5 shows an even more pronounced increase and
takes higher values. The field evolution of �=�n ofMgB2 is
well understood in terms of the multigap superconductivity
with a small gap �s on one FS and a large gap �l on the
other (indices l and s represent large and small gaps,
respectively) [18]. A consequence of the small gap is an
existence of a ‘‘virtual upper critical field’’ Hs

c2, above
which the overlap of a huge vortex core provides a dra-
matic increase of the QPs contributed to the heat conduc-
tion. Here, we note that the anisotropic s-wave gap is
denied in Lu2Fe3Si5 as follows. If it is the case,
the small gap �s is regarded as a minimum value of the
anisotropic gap�min. So that, to induce the finite �e, a field
of H� � 0:4 T is required for the Doppler shift energy to

overcome the minimum gap; �min � �maxðH�=Hc2Þ1=2
[21], where �max � �l [8]. Thus, in the anisotropic
s-wave state, it is expected that �=�n starts to grow above
H� due to the increase of Doppler shifted QPs. An absence
of such behavior rules out the anisotropic s-wave gap.
The characteristic field scale ofHs

c2 for the multigap can

be estimated from Hs
c2=Hc2 � ð�s=�lÞ2ðvF;l=vF;sÞ2.

On the other hand, the ‘‘normal-state’’ contribution of
the small gap band �s=�n is obtained from �s=�n ¼
�s=ð�l þ �sÞ ¼ Nsv

2
F;s�s=ðNlv

2
F;l�l þ Nsv

2
F;s�sÞ via a re-

lation of �i / Niv
2
F;i�i, where Ni, vF;i, and �i represent

normal-state electronic densities of state, Fermi velocity,
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FIG. 2 (color online). Thermal conductivity �=T as a function
of the field at several temperatures. Inset: �=�n vs H=Hc2 plot at
0.1 K. For comparison, the data for Nb [17], MgB2 [18], and
UPt3 [19] are also shown. The open circles show a result of
scaling described in the text.
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FIG. 1 (color online). Thermal conductivity �=T as a function
of the temperature under zero field. Inset: �=T vs T2 plot under
zero field. The solid line represents a fit to the data by �=T ¼
�0=T þ bT��1.
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and the scattering rate of each gap band (i ¼ l, s). Here,
suppose �s=�l is close to unity, �s=�n is simplified to
�1=f1þ ðNl=NsÞðvF;l=vF;sÞ2g. Consequently, two-gap

superconductivity is characterized by the three ratios
�l=�s, Nl=Ns, and vF;l=vF;s. With the knowledge of

�l=�s � 4 [1] and Nl=Ns, vF;l=vF;s � 1 [18], we find

Hs
c2=Hc2 � 0:1 and �s=�n � 0:5 for MgB2 in agreement

with various estimations [18,22]. Now, let us discuss the
case of Lu2Fe3Si5. Since�l=�s � 4 andNl=Ns � 1 [8] the
same asMgB2, the �=�n curve of Lu2Fe3Si5 is expected to
be scaled to that of MgB2 by tuning the ratio of vF;l=vF;s.

We achieve excellent scaling with vF;l=vF;s � 0:8 as

shown by the open circles in the inset of Fig. 2, yielding
Hs

c2=Hc2 � 0:04 and �s=�n � 0:6. The deviation at high

fields is due to the difference of Hc2. The inequality of
vF;l=vF;s indicates that the carrier mass m, which is in-

versely proportional to vF, is different in each band for
Lu2Fe3Si5 in contrast to MgB2 [18]. This contradiction
might originate from the characteristic of the dominant
electrons contributing to the density of state at the FS; Fe
3d electrons in Lu2Fe3Si5 and B 2p electrons in MgB2,
respectively. In addition, unequal weight of the d character
among the distinct FSs yields the heavy and light carrier
bands. Notably, a signature of the electronic correlations
possibly derived from the d electrons can be found in the
specific heat coefficient �n ¼ 23:7 mJ=molK2 [8], which
is about 10 times larger than that of MgB2 (�n ¼
2:62 mJ=molK2) [23]. The rather small �band ¼
8:69 mJ=molK2 obtained from the band calculations [8]
also indicates the presence of the electronic interactions.
On the other hand, the small gap on the light carrier band
provides a dramatic enhancement of �ðHÞ=T because � is
sensitive to the light carrier mass.

In order to further clarify the MGSC of Lu2Fe3Si5, we
present the �ðTÞ=T curve in the vortex state (Fig. 3). By
applying fields, we observe a pronounced increase of
�ðTÞ=T at low temperatures corresponding to the fast
growth of �ðHÞ=T. Furthermore, an anomaly associated
with a slight change of slope is found around 0.8 K at 0.1 T,
and it shifts to�0:3 K at 0.25 Tas denoted by the arrows in
Fig. 3. With further increasing fields, the anomaly becomes
more pronounced, being a maximum around Tm � 0:2 K
above 1.0 T. The maximum can be attributed to either the
phononic or the electronic contribution. However, we ex-
clude the phononic origin because the appearance of pho-
non peaks twice below Tc is highly unlikely. Moreover, an
increase of the phonon mean-free path up to 10 folds of the
zero-field value, for example, at 5 T, is improbable even if
the low-temperature �ðTÞ=T is dominated by the specular
reflection. The effect of electron-phonon decoupling to the
downturn of �ðTÞ=T below Tm is also excluded because the
�ðHÞ=T curve at 0.1 K, which is well below Tm, shows
even stronger field dependence compared with the data for
T ¼ 0:6 K> Tm (Fig. 2). These results are in contradic-
tion to the calculations in the presence of the electron-
phonon decoupling [24], in which � becomes insensitive to

the field as lowering the temperature due to the reduction
of the electronic contribution. Thus, we turn to the elec-
tronic origin raising the following possibilities: (1) an
enhancement of the QP mean-free path le, (2) a magnetic
anomaly associated with a magnetic order, and (3) an
increase of delocalized QPs excited above �s. For the
possibility of (1), the enhancement of le below Tc usually
occurs as a result of the strong inelastic scattering. This is
because normal-state le suppressed by the inelastic scat-
tering starts to increase below Tc due to the condensation
of electronic scattering centers. In practice, this behavior
has been observed in CeCoIn5 [25] and YBCO [26], in
which a source of the inelastic scattering is attributed to the
magnetic fluctuations. However, no signature of such fluc-
tuation has been indicated in Lu2Fe3Si5 [27]. The magnetic
origin is also ruled out because Fe atoms carry no magnetic
moment [27]. Therefore, in the following we discuss the
possibility (3) by analyzing �ðTÞ=T within the framework
of the two-gap model.
In the superconducting state, �e is expressed as

�e=�n ¼ 2F1ð�yÞþ 2y lnð1þ e�yÞþ y2ð1þ eyÞ�1

2F1ð0Þ ; (1)

where y ¼ �ðtÞ=kBT,�ðtÞ being half of the energy gap and
t ¼ T=Tc [28]. �ðtÞ is given by the standard gap interpo-

lation formula �ðtÞ ¼ �0 tanhð2:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=t� 1
p Þ, where �0 is

an energy gap at T ¼ 0. The term of F1ð�yÞ is given by
Fnð�yÞ ¼ R1

0 znð1þ ezþyÞ�1dz. Following the approach

used for the specific heat [8], we generalize Eq. (1) to the
two-gap model as �e ¼ ns�e;s þ ð1� nsÞ�e;l, where �e;i

(i ¼ l, s) is the large and small gap bands’ thermal con-
ductivity, respectively, and ns is a weight for the small gap
band. In the analysis, ns is fixed to be 0.6 regardless with
the field, which is determined from the scaling. To obtain
�n, we estimate �ph from the minima of �ðHÞ=T (Fig. 2)
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FIG. 3 (color online). Thermal conductivity �=T as a function
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calculated �=T curves for the corresponding fields within the
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assuming that the minima represent at most the maximum
value of �ph [18].

The solid lines shown in the inset of Fig. 3 represent the
calculated results of the total thermal conductivity �=T ¼
�e=T þ �ph=T. Here, we assume �phðTÞ=T to be 0:11T0:8

as determined by the zero-field �=T (the dashed line in
Fig. 3). Moreover, at zero field, we use the gap values of
2�0;l=kBTc ¼ 4:4 and 2�0;s=kBTc ¼ 1:1 obtained from the

specific heat measurement [8]. The field variation of�lðHÞ
is assumed to follow the mean-field description �lðHÞ ¼
�0;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�H=Hc2

p

(the solid line in Fig. 4). It should be

emphasized that the two-gap model well reproduces the
experimental results especially for the maximum only by
tuning the small gap �s=kBTc. The result further supports
the existence of the small gap in Lu2Fe3Si5. Furthermore,
the maximum most likely originates from an increase of
the delocalized QPs excited over �s. On the other hand,
there exists a discrepancy between the experiment and the
calculation below Tm; the experimental results show a
gradual decrease while the calculated �=T rapidly drops
to zero. One possible interpretation is that the system
behaves like a dirty superconductor (� > le) due to the
presence of �0H

s
c2 that gives rise to a large coherence

length �. It has been argued that the superconductors in
the dirty regime show a rapid growth of QP density in the
mixed state in comparison with those in the clean limit
(� � le) [29].

The parameter of �s=kB obtained from the analysis and
�l=kB are plotted against the field in Fig. 4. It is clearly
seen that �s=kB sharply decreases at low field �0Hs 	
0:25 T, while �l=kB shows a monotonous decrease. Note
that �0Hs is close to the virtual upper critical field
�0H

s
c2 � 0:26 T. Interestingly, a similar suppression of

�s below�0H
s
c2 is also observed inMgB2 as demonstrated

in the inset of Fig. 4, in which the gap values are

determined by the point-contact study [30]. For MgB2,
this behavior is understood as a consequence of a weak
interband pairing interaction [30,31]. From the analogy of
MgB2, the existence of the multiple bands having the
different dimensionality and the weak interband interaction
could be a source of the MGSC in Lu2Fe3Si5.
In summary, our thermal conductivity measurements

clarify the multigap superconductivity with the fully
opened gaps in Lu2Fe3Si5. The weak coupling between
the distinct gap bands is thought to be the origin of the
MGSC. In contrast toMgB2, the dramatic enhancement of
the quasiparticle heat conduction in the mixed state implies
the presence of the electronic correlations derived from the
Fe 3d electrons. Our findings shed new light on the MGSC
in the correlated electron systems.
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