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The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine

interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin

Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state

of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the

nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but

increases superexponentially away from the center. This suggests to select states from the wings of the

distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of

the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical

Overhauser field at high nuclear spin temperature.
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Spin dynamics in semiconductor nanostructures has re-
cently become a topic of great interest due to the possibility
of using the spin degree of freedom instead of charge in
electronic circuits [1] and equally important due to the
proposal of using electron spin in a semiconductor quan-
tum dot as a fundamental building block of the quantum
computing device [2]. GaAs quantum dots are the main
candidates in practical realizations of these proposals due
to the well developed manufacturing technology. However,
unavoidable inhomogeneous hyperfine interaction of elec-
tron spin with many nuclear spins of the host crystal acts as
a noisy environment that is the main source of dephasing
for the electron spin at low temperature when relaxation
due to the phonons is ineffective.

The limit of fully polarized nuclear spin bathwas analyzed
exactly in [3], including spectral properties. However, it is
rather hard to achieve a significant polarization dynamically,
and thermodynamic polarization, requiring submilli Kelvin
temperatures [4], is still out of reach for semiconductors.
Currently, a more promising route is to actively reduce the
distribution width of the nuclear Overhauser field by projec-
tive measurements [5–7]. This has been partially achieved in
experiments leading to significantly longer decoherence
times [8–10]. To further optimize projective measurement
techniques it is essential to gain a better understanding of the
spectral properties of the unpolarized system which, so far,
have only been understood qualitatively.

In this paper we diagonalize the central spin
Hamiltonian for a quantum dot in the high magnetic
B-field limit using a 1=B expansion. Projecting the eigen-
states on an unpolarized state of the nuclear spin bath we
find that their density has Gaussian tails. Correspondingly
the level spacing of the nuclear spin sublevels, which is
exponentially small with the radius of the quantum dot in
the middle of the two electron Zeeman levels, becomes
superexponentially large with detuning away from the

center; see Fig. 1. This suggests using a finite detuning
from the bare electron Zeeman energy when one eliminates
the effect of the nuclei by the projective measurement
technique [5–10].
Our theory is applicable when the external magnetic

field B is larger than a typical Overhauser field at high

nuclear spin temperature due to fluctuations Bfluc ¼
A

ffiffiffiffiffiffiffiffiffiffi
S= ~N

p
=�, where A=� is the maximum Overhauser field,

~N is the number of nuclei under the electron envelope wave
function, and S is a number of degenerate hyperfine cou-
plings. At low field B< Bfluc, the spectrum can be obtained
by a numerical solution of the Richardson equations [11]
where the 1=B expansion of the present Letter can be used
as a benchmark for complex numerical procedures.

FIG. 1. Numerical evaluation of �ðEÞ using Eq. (2) on a course
scale—thick line and Eq. (5)—thin line (Sj ¼ 1, r0 ¼ 8,

N ¼ 18, a fixed external B field), A is a maximum Overhauser
field, E0 is a shift from Eq. (5). Insets show �ðEÞ on a fine scale
in the middle of the upper electron Zeeman line and at a
finite detuning, the average level spacing d was evaluated using
Eq. (6).
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The spin of an electron in a quantum dot couples to
nuclear spins in the presence of an external B field as

H ¼ �BSz0 þ
XN
j¼1

AjS0 � Sj; (1)

where� ¼ g�B is the electron magneton (in the following
we neglect the nuclear Zeeman splitting), Sz0, S�0 ¼
Sx0 � iSy0 are electron spin-1=2 operators and Sj (j � 1)

are spin operators of nuclear shell j with the maximum
angular momentum Sj � 1=2 constructed out of 2Sj nuclei

of spin-1=2 which have the same hyperfine coupling to the

electron spin, Sj ¼ P2Sj
i¼1 Iji, where i labels individual

nuclei within the shell, Iji are nuclear spin-1=2 operators,

and N is the number of nuclear shells. Assuming harmonic
confinement of the electron in all spatial directions the
couplings are Aj ¼ A0 expð�r2j=r

2
0Þ, where A0 is the cou-

pling in the middle of the quantum dot, and r0 and rj are

spatial size of the quantum dot and radius of jth shell in
units of the lattice parameter.

In 1D only two nuclei have the same coupling ignoring
the isotope effects and assuming equidistant lattice sites
rj ¼ j; thus, the maximum total angular momentum is

Sj ¼ S ¼ 1. In 2D degeneracy of the couplings gives Sj ¼
S ¼ 4 but the radii of the sequential shells are not equidis-
tant because the number of nuclei grows linearly away
from the center. We thus model the system as a set of
concentric nuclear shells, rj ¼ rþ 4m=ð�rÞ and also

change the summation indices in Eq. (1),
P

N
j¼1 !PN;�r=4

r¼1;m¼1 [12]. In 3D the degeneracy is larger than in 2D,

Sj ¼ S ¼ 12, and the number of the nuclei grows quadrati-

cally away from the center, rj ¼ rþ 6m=ð�r2Þ, PN
j¼1 !PN;�r2=6

r¼1;m¼1 .

This model conserves the number of excitations
½H; Jz� ¼ 0, where Jz ¼ P

N
j¼0 S

z
j, and the total angular

momentum of each nuclear shell ½H;S2
j � ¼ 0. All of

them also commute with each other, ½Jz;S2
j � ¼ 0 and

½S2
i ;S

2
j � ¼ 0. Thus the Hilbert space is partitioned into a

set of disconnected subspaces labeled by the following
quantum numbers: n is an eigenvalue of Jz and lj [13]

correspond to S2
j , S

2
j j�i ¼ ljðjj þ 1Þj�i. The latter be-

comes trivial when all of the nuclear spins have different
couplings as for spin-1=2 operators S2

j ¼ 3=4 is a number

but is nontrivial when Sj > 1=2.

The diagonalization in each subspace can be performed
using degenerate perturbation theory when the B field is
large. Splitting the Hamiltonian into the unperturbed part
H0 ¼ �BSz0 and a perturbation V ¼ P

jAjS0 � Sj defines

two electron Zeeman levels, E ¼ ��B=2 but leaves the
nuclear spin sublevels hugely degenerate in the zeroth-
order approximation. The latter degeneracy has to be lifted
via a diagonalization of the perturbation V.

In the basis of eigenstates of Jz, j�i ¼ j�; flj; kjgi,
h�j�i ¼ 1, V is a diagonal matrix within both of the
electron spin subspaces where the spin-flip part of V that
couples opposite electron levels can be neglected when the
external field is very large [12]. Here � refers to the ‘‘up’’
and ‘‘down’’ electron Zeeman levels and kj are the num-

bers of nuclear spin excitations on each shell such that the
quantum number n ¼ ð1� 1Þ=2þP

N
j¼1 kj. The second

order correction to the eigenenergies are due to the spin-
flip part of V. Using the matrix elements of V in the basis of
eigenstates of Jz we obtain

E ¼ ��B

2
� XN

j¼1

�
Ajð�lj þ kjÞ

2

þ A2
j ð2lj � kj þ 1�1

2 Þðkj þ 1�1
2 Þ

4�B

�
; (2)

where the energy denominator in the last term was also
expanded up to the leading order in 1=�B. Including the
first order corrections to the eigenfunctions we get

j�i ¼ j�; flj; kjgi �
XN
m¼1

Am

�B
S�m j�; flj; kjgi: (3)

The large magnetic field expansion has different con-
ditions of applicability for the eigenenergies Eq. (2) and
the eigenstates Eq. (3) in the subspaces of unpolarized
nuclear spins kj � lj. The subleading terms in Eq. (2) are

small in all subspaces when B � Bfluc where Bfluc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
j¼1 A

2
jS

2
j

q
=�. But the next (second) subleading correc-

tion to Eq. (3) is small only when B � Bmax where Bmax ¼
r20A0=2� in 1D and 2D (Bmax ¼ r30A0=

ffiffiffiffiffi
8e

p
� in 3D) [12] is

a much larger field than Bfluc. The latter signals that the
choice of the eigenfunctions, j�i ¼ j�; flj; kjgi, is a poor
zeroth-order approximation in the intermediate field re-
gime, Bfluc 	 B 	 Bmax. The correct approximation can
be identified by merging the inner nuclear shells with

different couplings up to the radius ~r ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðBmax=BÞ

p
(in units of the lattice parameter) in 1D and 2D

[~r ¼ r0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðBmax=BÞ

p Þ= ffiffiffi
2

p
in 3D] [12] into a single

shell with the same coupling A0. Then, diagonalizing
Hþ V 0, where V 0 ¼ P

j:rj
~rðA1 � AjÞS0 � Sj, when

Bfluc 	 B 	 Bmax instead of the original model H we
obtain the same result as in Eqs. (2) and (3) but a different

definition of nuclear shells ~Sj, where the first element

is ~S1 ¼
P

j:rj
~rSj, the middle elements are ~Sj ¼ 0 for 1<

rj 
 ~r, and the outer elements, rj > ~r, are ~Sj ¼ Sj.

In two and three dimensions the parameter Bmax

is proportional to the measurable maximum Overhauser
field A ¼ PN

j¼1 SjAj, A=� is of the order of a few Tesla

[14], with the numerical factor ��1 and ð2�3eÞ�1. In
1D, Bmax ¼ ~NA=ð��Þ is much larger than A, here
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~N ¼ P
N
j¼1 2SjAj=A0. The parameter Bfluc ¼ A

ffiffiffiffiffiffiffiffiffiffi
S= ~N

p
=�

scales with the number of nuclei under the electron envelop
function in all dimensions.

In terms of density of states the bare electron level
acquires a finite smearing due to coupling to many degrees
of freedom of unpolarized nuclear spins. When the quan-
tum dot is empty the nuclei at different lattice sites are
uncorrelated. After an electron, say with spin up, populates
the quantum dot, the state of the combined system j�0i ¼
Sþ0

Q
fj;igIþji j +i is not an eigenstate of the Hamiltonian

Eq. (1), where fj; ig labels a subset of nuclear lattice sites
and j +i is the all spins down (including the central spin)
state. We analyze the distribution of the eigenenergies
Eq. (2) using a projected density of states �ðEÞ ¼P

flj;kjgPðflj; kjgÞ�ðE� Eðflj; kjgÞÞ, where Pðflj; kjgÞ ¼ 1

when h�0jflj; kjgi � 0 and Pðflj; kjgÞ ¼ 0 when

h�0jflj; kjgi ¼ 0. Here the
P

flj;kjg runs over all subspaces
and all eigenstates within each subspace. Note that for any
shell with Sj > 1 the complete set of the eigenstates in-

cludes lj with multiplicities greater than one [13]. Only one

of each lj is kept since these multiplicities do not change

Pðflj; kjgÞ. We calculate the overlaps matrix elements only

in the leading 1=�B order as the probability of measuring
other eigenstates coming from subleading orders is at least
as small as Aj=�B.

By representing the delta function as �ðxÞ ¼R
d�e{x�=ð2�Þ, the Fourier transform of �ðEÞ can be writ-

ten as a product of sums over each nuclear spin shell

�ð�Þ ¼ X
flj;kjg

Pðflj; kjgÞe�i�Eðlj;kjÞ ¼ YN
j¼1

e�ði�ðpjAj��BÞ=2Þ

� Xpjþ~Sj

k¼pjð1þsgnpjÞ
e�ði�A2

j ðk�2pjÞðkþ1Þ=4�BÞ; (4)

where pj ¼ h�0jSzjj�0i, jpjj 
 lj, are polarizations of the

shells given by the state of the system j�0i.
Assuming that each shell is unpolarized pj 	 ~Sj

and ~Sj � 1, the sum within a shell can be calculated as

an integral, Ijð�Þ ¼
R~Sj
0 dke�ixkðkþ1Þ ¼ ffiffiffiffi

�
p

eix=4½erfðð1 þ
2~SjÞ

ffiffiffiffiffi
ix

p
=2Þ � erfð ffiffiffiffiffi

ix
p

=2Þ�=ð2 ffiffiffiffiffi
ix

p Þ, x ¼ �A2
j=ð4�BÞ,

which is an oscillating function of �. Then the product of
the oscillating functions can be approximated in the
large-N limit by turning it into an exponential of a sum
of logarithms,

Q
N
j¼1 Ijð�Þ ¼ I1ð�Þ expð

P
N
j:rj>~r logIjð�ÞÞ,

and by expanding the exponent in �,
P

N
j:rj>~r logIjð�Þ�P

N
j:rj>~r½logSj� iðSj=2þS2j=3Þ�A2

j=ð4�BÞ�ðS2j=24þS3j=

12þ2S4j=45Þ�2A4
j=ð16�2B2Þ�.

In one dimension Ijð�Þ cannot be calculated as an in-

tegral since the degeneracy of the hyperfine couplings is
two but the explicit evaluation of the sum of only two terms
within each shell and the small-� expansion yields a

similar expression,
PN

j:rj>~r logIjð�Þ �
PN

j:rj>~r½log2�
i�A2

j=ð4�BÞ � �2A4
j=ð

ffiffiffi
2

p
4�BÞ2�. Strictly speaking, the

small-� expansion is good when � 	 16�B=A2
~r but the

resulting Gaussian is also quite a good approximation for a
large � since the original product of many oscillating
functions is zero due to random phases of Ijð�Þ when

� � 4�B=A2
~r , provided that the couplings Aj have a non

regular distribution.
By evaluating the inverse Fourier transform �ðEÞ ¼R
d��ð�Þ expð�iE�Þ in the limit B � Bmax we obtain

�ðEÞ ¼
~S1
Q

N
j:rj>~r Sjffiffiffiffi
�

p
�

exp

�
�ðE� E0Þ2

�2

�
; (5)

where E0 ¼ PN
j¼1 pjAj=2��B=2 is a shift of the

bare electron level that depends on the momentary state

of the nuclei and a finite linewidth � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j:rj>~rðS2j=96þ S3j=48þ S4j=90ÞA4

j=ð�BÞ
q

that is com-

mon for all unpolarized nuclear states. In the intermediate

regime Bfluc 	 B 	 Bmax Eq. (5) is valid when E �
~S21A

2
1=ð4�BÞ. The contribution of the inner shells can be

approximated as I1ð�Þ ¼ ~S1 when, due to the fast oscillat-
ing exponential, the main contribution to the inverse

Fourier transform comes from � 
 4�B=ð~S1A1Þ2.
In 1D, the Gaussian result agrees precisely with the

spectroscopically measurable line shape when B � Bmax.
As the degeneracy of hyperfine couplings is 2 for all shells,
all projections [13] are the overlap of the singlet (or triplet)

and two nuclear spin states which give 1=
ffiffiffi
2

p
and the

calculation of the line shape gives Eq. (5). When the
degeneracy is larger than 2 the two calculations are differ-
ent. It is also worth noting that the state j�ð0Þi is an
eigenstate of the model Eq. (1) with Sj ¼ 1=2 in the high

B-field B � Bmax.
Rediscretization of Eq. (5) recovers the average level

spacing of the nuclear spin levels. From the definition of
the density of states, d ¼ 1=�ðEÞ is an energy range that
contains only one state. But, as the prefactor in �ðEÞ
increases to infinity when more and more outer shells are
taken into account, the level spacing becomes zero. On the
other hand the coupling strengths of the outer shells be-
come superexponentially small which make the splitting of
the inner shells’ levels into sublevels due to the outer shells
very narrow. Thus, by selecting an effective number of the
significantly coupled nuclear shells rj < 4r0, we find

dðEÞ ¼ dðE0Þ exp½ðE� E0Þ2=�2�; (6)

where dðE0Þ ¼
ffiffiffiffi
�

p
�=ð~S1

Q
j:~r<rj<4r0

SjÞ is exponentially

small, dðE0Þ ’ ~S1 expð� ~N=SÞ. Thereby, dðE0Þ is a tiny
level spacing in the middle of the upper electron Zeeman
line but dðEÞ increases superexponentially at a finite
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detuning E � E0 on a characteristic energy scale � when

B � Bmax and ~S21A
2
1=ð4�BÞ when Bfluc 	 B 	 Bmax.

There is also a finite temperature smearing. To average
the hyperfine shift E0 over all possible nuclear spin
configurations at a high temperature, �0ðEÞ ¼

P
fpjg�ðE�

E0Þ, we use the same approach as in the calculation of �ðEÞ
and obtain the Gaussian distribution of levels with a width

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
j¼1 S

2
jA

2
j=6

q
and an average level spacing d0 ¼

exp½ðE��B=2Þ2=�2
0�~S1

Q
j:~r<rj<4r0

2Sj=ð
ffiffiffiffi
�

p
�0Þ. This im-

plies that if the nuclear spin state is not prepared in a
specific way but is a thermal state, there are two energy
scales in a projective measurement to narrow the nuclear
spin bath [8–10] in order to suppress fluctuations of the
Overhauser field [5–7]. A measurement in the coarse reso-
lution of d0 will select a single specific nuclear spin
configuration suppressing only thermal fluctuations and a
measurement in the fine resolution of d will project the
system on an eigenstate within a given nuclear bath state.

Using the eigenstates and the spectrum in Eqs. (2) and (3)
one can evaluate the time-dependent density matrix of the

electron with an unpolarized state of the nuclei, j�ð0Þi ¼
ð1þ Sþ0 Þ

Q
fj;igIþji j +i=

ffiffiffi
2

p
such that h�ð0ÞjJzj�ð0Þi ¼ 0, as

an initial condition.As a result the diagonalmatrix elements
do not decay in time in the leading 1=�B order, T1 ¼ 1.
When the degeneracy of the hyperfine couplings is only 2
(1D case and B � Bmax) the off-diagonal matrix elements
have a slowGaussian envelopwith decay timeT2 ¼ 1=� on
top of the fast electron spin Rabi oscillationswith frequency
�B. Note that one obtains the Gaussian decay assuming a
phenomenological model of a quasistatic ensemble of nu-
clear magnetic fields [6]. At a high temperature, averaging
over different j�ð0Þi, one also obtains the Gaussian decay
due to thermal fluctuations with T2 ¼ 1=�0 [15] which is
much faster than 1=�.

When the degeneracy of the hyperfine couplings is
larger than 2 (2D and 3D cases and Bfluc 	 B 	 Bmax in
1D) we establish a bound on the shortest decay time
assuming that all Clebsch-Gordan coefficients in the over-
laps between the initial state j�ð0Þi and the eigenstates
Eq. (3) are equal and neglecting degeneracies of lj [13].

This simplification gives a Gaussian decay with decay time
T2 ¼ 1=�. A more accurate calculation would give a
spectroscopic line shape, see discussion after Eq. (5),
which is narrower than the distribution of the eigenenergies
thus giving a longer decay time.

The eigenenergies Eq. (2) are a good benchmark for
numerical studies of Richardson equations [16]. The spec-
trum of the model Eq. (1) can be found at arbitrary field and
for any quantum number n by solving a set of coupled
nonlinear equations [11],

XN
j¼1

2ljAj=2

E� þ Aj=2
þ 1��B

E�

þ Xn
k¼1��

2Ek

E� � Ek

¼ 0; (7)

as E ¼ P
n
�¼1 E� þ

P
N
j¼1 ljAj=2��B=2. At an infinitely

large magnetic field solutions of these equations are sets of
numbers E� which are close either to �Aj=2 or �B. At a

finite magnetic field a 1=B expansion of the Eqs. (7) at these
values of E� recovers the 1=B expansion in Eq. (2) and a
1=B expansion of the Gaudin states [11] recovers Eq. (3).
In conclusion we have diagonalized the central spin

Hamiltonian in the high B-field limit. Projecting the eigen-
states on an unpolarized state of the nuclear bath we have
shown that the level spacing of the nuclear sublevels,
which is exponentially small in the middle of the bare
electron level, becomes superexponentially large with de-
tuning away from the middle. This suggests to select states
from the wings of the distribution when one attempts to
eliminate the decohering effect of the nuclei by projective
measurement techniques. This theory is valid when the
external B field is larger than typical Overhauser fields.
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