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The recent discovery of topological insulators has revived interest in the band topology of insulators. In

this Letter, we extend the topological classification of band structures to include certain crystal point

group symmetry. We find a class of three-dimensional ‘‘topological crystalline insulators’’ which have

metallic surface states with quadratic band degeneracy on high symmetry crystal surfaces. These

topological crystalline insulators are the counterpart of topological insulators in materials without spin-

orbit coupling. Their band structures are characterized by new topological invariants. We hope this

work will enlarge the family of topological phases in band insulators and stimulate the search for them in

real materials.
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The topology of band structures is important in the study
of topological phases of matter. Historically, the quantiza-
tion of Hall conductance in the integer quantum Hall effect
was explained by the Thouless-Kohmoto-Nightingale–
den Nijs integer (also known as Chern number) of occupied
energy bands [1]. Recently, the topological classification
of spin-orbital coupled band structures with time-reversal
symmetry has played a key role in the theoretical predic-
tion of topological insulators [2–4]. The subsequent devel-
opment of topological band theory [5], combined with
realistic band structure calculations, has proven useful in
the material search for topological insulators.

Inspired by the discovery of topological insulators, the
classification of band structures has been extended to other
discrete symmetry classes such as particle-hole symmetry
[6–8], which leads to a rich family of topological phases
such as topological superconductors [6,9]. More recently,
the classification of magnetic insulators with certain
magnetic translation symmetry has been studied [10,11].
Finding these phases in real materials is interesting and
challenging.

The purpose of this Letter is to extend the classification
of band structures in a different direction—to include
crystal point group symmetries. We introduce the notion
of ‘‘topological crystalline insulators,’’ which cannot be
smoothly connected to a trivial atomic insulator when
time-reversal (T) symmetry and certain point group sym-
metry are respected. Unlike time-reversal symmetry, crys-
tal symmetries can be broken by sample surfaces. As a
result, a low-symmetry surface of a topological crystalline
insulator does not have robust surface states. This moti-
vates us to study a class of three-dimensional topological
crystalline insulators which have fourfold (C4) or sixfold
(C6) rotational symmetry. As we will show, its (001) sur-
face, which preserves the rotational symmetry, supports
gapless surface states. These topological crystalline insu-
lators are the counterpart of topological insulators in ma-
terials without spin-orbit coupling. Instead, an electron’s

orbital degrees of freedom play a role similar to spin.
Unlike the linearly dispersing Dirac surface states of topo-
logical insulators, the (001) surface states of topological
crystalline insulators have quadratic band degeneracy
protected by time-reversal and discrete rotational symme-
try[12,13].
The outline of this Letter is as follows. First we intro-

duce a simple tight-binding model in a tetragonal crystal
with C4 symmetry. We explicitly show that gapless surface
states exist on the (001) crystal face. The topological
stability of surface states suggests a nontrivial phase in
this model. Next we define a new Z2 topological invariant
for generic time-reversal-invariant band structures with C4

or C6 symmetry in three dimensions. This establishes the
topological crystalline insulator phase. Finally, we discuss
the electronic properties of quadratic surface bands.
Tight-binding model.—Consider a tetragonal lattice with

a unit cell of two inequivalent atoms A and B along the c
axis, as shown in Fig. 1(a). The 3D crystal can be viewed as
a stack of bilayer square lattices in the ab plane. We now
introduce a tight-binding model to describe the band struc-
ture of an electron’s p orbitals (or d orbitals, see the next
paragraph). In particular, we are interested in the energy
bands derived from px and py orbitals. We assume that

these bands do not overlap with the pz bands, and construct
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FIG. 1 (color online). (a) Tetragonal lattice with two atoms
A and B along the c axis in the unit cell. (b) The Brillouin zone
and four high symmetry points.
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a tight-binding model from Wannier functions with the
same symmetry as px and py orbitals. The Hamiltonian

H consists of intralayer hopping HA and HB, as well as
interlayer hopping HAB:

H ¼ X
n

HA
n þHB

n þHAB
n ;

Ha
n ¼ X

i;j

taðri � rjÞ
X
�;�

cya�ðri; nÞeij�eij�ca�ðrj; nÞ;

HAB
n ¼ X

i;j

t0ðri � rjÞ
�X

�

cyA�ðri; nÞcB�ðrj; nÞ þ H:c:

�

þ t0z
X
i

X
�

½cyA�ðri; nÞcB�ðri; nþ 1Þ þ H:c:�:

(1)

Here, each site is specified by ðn; r; aÞ, where n labels the
bilayer unit cell along the c axis, r ¼ ðx; yÞ labels the
ab-plane coordinate, a ¼ A; B labels the sublattice, and
�;� label the px; py orbital. Two types of p-orbital hop-

ping terms appear in H. The intralayer hopping in Ha is of
�-bonding type: it depends on the relative orientation of
the p orbital and the hopping direction eij ¼ ðri � rjÞ=
jri � rjj. The interlayer hopping inHAB is orbital indepen-

dent. Written in this form, the tight-binding Hamiltonian
manifestly preserves crystal symmetries. The hopping
amplitudes ta, t0, and t0z between two sites depend on their
ab-plane distance ri � rj. Throughout this Letter, we

assume spin-orbit coupling is negligible, so that the elec-
tron’s spin index is omitted.

We emphasize that the form of the Hamiltonian H is
entirely determined by crystal symmetry. Because dxz;yz
orbitals transform in the same way as px;y orbitals under

C4, (1) also applies to materials with these d orbitals.
Therefore, (1) is potentially relevant to a large class of
materials including transition metal compounds with t2g
orbitals near Fermi energy.

To obtain a minimal model for topological crystalline
insulators, we include the nearest and next-nearest neigh-
bor intralayer hoppings in Ha with the amplitude ta1 and t

a
2 ,

as well as nearest and next-nearest neighbor interlayer
hoppings in HAB with the amplitude t01 and t02. The corre-
sponding Bloch Hamiltonian HðkÞ is obtained by Fourier
transform:

HðkÞ ¼ HAðkÞ HABðkÞ
HAByðkÞ HBðkÞ

� �
;

HaðkÞ ¼ 2ta1
coskx 0
0 cosky

� �

þ 2ta2
coskx cosky sinkx sinky
sinkx sinky coskx cosky

� �
;

HABðkÞ ¼ ½t01 þ 2t02ðcoskx þ coskyÞ þ t0zeikz�I:

(2)

The band structure is shown in Fig. 2(a) for the following
set of parameters: tA1 ¼ �tB1 ¼ 1, tA2 ¼ �tB2 ¼ 0:5, t01 ¼
2:5, t02 ¼ 0:5, t0z ¼ 2. We have checked that the energy
gap is finite everywhere in the Brillouin zone. As long as

the energy gap does not close, the system remains in the
same topological class within a finite parameter range.
To study surface states, we solve H in a slab geometry.

We find that the existence of gapless surface states cru-
cially depends on the surface termination. Consider the
high symmetry (001) surface, which preserves the C4

symmetry. Here surface states exist and transverse the
whole energy gap as shown in Fig. 2, leading to a 2D
surface metal. Note that surface states are doubly degen-
erate at �M ¼ ð�;�Þ: one in px orbital and the other in py

orbital. Because �M is a fixed point under fourfold rotation,
the doublet forms a two-dimensional irreducible real rep-
resentation of C4 symmetry, as a result of time-reversal
symmetry for electrons without spin-orbit coupling (i.e.,
spinless fermions). Surface band dispersion near �M can be
obtained from k � p theory. We introduce a pseudospin
�z ¼ �1 to label the px and py orbital of the doublet. In

this basis, C4 rotation is represented by ei�y�=4 and time-
reversal operator T is represented by complex conjugation.
Up to a gauge transformation, the form of the k � p
Hamiltonian H is dictated by symmetry:

H ðkx; kyÞ ¼ k2

2m0

þ k2x � k2y
2m1

�z þ
kxky
2m2

�x: (3)

Perturbations which break either C4 or T symmetry can
open up an energy gap and destroy the protected surface
states. This can be seen explicitly by adding a C4-breaking
term M1kx�y þM2�z or a T-breaking term M�y to H .

Similar quadratic bands have been recently studied in 2D
photonic crystals [12] and fermion models [13]. Our tight-
binding model does not have gapless surface states for
other surface terminations which break the C4 symmetry.
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FIG. 2 (color online). (a) Bulk band structure of the tight-
binding model along high symmetry lines. (b) Surface states
with quadratic band touching exist on (001) face. The tight-
binding parameters are shown in the text below Eq. (2).
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When T and C4 symmetry are preserved, the surface
states shown above are topologically protected. This can be
understood by considering the surface band dispersion

along �� �M . Within our model, surface states (if present)

must be doubly degenerate at �� and �M. As a consequence,
there exist two distinct types of surface band connectivity

along �� �M , having an even or odd number of band cross-
ings at Fermi energy, respectively. Surface states with even
crossings are fragile: they can be pushed out of the energy
gap by changing the surface potential. Surface states with

odd crossings have a Fermi surface which encloses �� an
odd number of times. They cannot be removed. These two
types of surface states imply the existence of two topologi-
cally distinct phases of time-reversal-invariant band insu-
lators with fourfold symmetry. The reasoning here closely
follows the previous study of topological insulators [14].

Z2 topological invariant.—We now show that a Z2 to-
pological invariant �0 ¼ 0; 1 characterizes the band struc-
ture of 3D time-reversal-invariant insulators with fourfold
rotation symmetry (without spin-orbit coupling). �0 ¼ 0
corresponds to a trivial phase adiabatically connected to
an atomic insulator. �0 ¼ 1 corresponds to a topological
crystalline insulator which has gapless surface states on
the (001) surface.

We start by examining the symmetry property of Bloch
wave functions of occupied bands: jc nðkÞi ¼ eik�rjunðkÞi,
where junðkÞi is the cell-periodic eigenstates of the Bloch
Hamiltonian HðkÞ � e�ik�rHeik�r. Here the unit cell is
chosen to be invariant under C4 rotation around the z
axis. HðkÞ satisfies

Hðkx; ky; kzÞ ¼ UHðky;�kx; kzÞU�1;

Hðkx; ky; kzÞ ¼ THð�kx;�ky;�kzÞT�1:
(4)

Here the unitary operator U ¼ eiL̂z�=2 implements C4 ro-

tation within the unit cell (L̂z ¼ xPy � yPx is angular

momentum operator). The antiunitary operator T ¼ K
(complex conjugation) implements time-reversal transfor-
mation for spinless fermions, with the property T2 ¼ 1. As
a result, time-reversal symmetry by itself does not guaran-
tee a twofold degeneracy. However, the combination of
time-reversal and fourfold rotational symmetry can lead to
protected degeneracies at four special momenta � ¼
ð0; 0; 0Þ, M ¼ ð�;�; 0Þ, A ¼ ð�;�;�Þ, Z ¼ ð0; 0; �Þ in
the 3D Brillouin zone [Fig. 1(b)]. At such a high symmetry
point ki,HðkiÞ commutes withU, so that the energy bands
junðkiÞi are eigenstates of fourfold rotation with possible
eigenvalues 1, �1, i, and �i. Moreover, because HðkiÞ is
real, energy bands at ki with �i eigenvalues are guaran-
teed to be degenerate, forming a two-dimensional irreduc-
ible real representation of C4. For example, such doublet
bands can derive from ðpx; pyÞ orbitals or ðdxz; dyzÞ orbi-
tals. From now on, we consider a set of energy bands
junðkÞi, n ¼ 1; . . . ; 2N, which are doubly degenerate
E2n�1ðkiÞ ¼ E2nðkiÞ at �, M, A, and Z. As we will see
below, only these doublet bands admit a Z2 classification.

The Z2 topological invariant � is defined in terms of the
electron wave functions:

ð�1Þ�0 ¼ ð�1Þ��M ð�1Þ�AZ ; (5)

ð�1Þ�k1k2 ¼ exp

�
i
Z k2

k1

dk �Ak

�
Pf½wðk2Þ�
Pf½wðk1Þ� ;

Ak � �i
X
j

hujðkÞj@kjujðkÞi;

wmnðkiÞ � humðkiÞjUTjunðkiÞi:

(6)

Ak is the Uð1Þ Berry connection and wðkiÞ is an antisym-
metric Uð2NÞ matrix because ½HðkiÞ; UT� ¼ 0 and
ðUTÞ2 ¼ �1. Pf stands for the Pfaffian. We now specify
the integration path in (6). For ��M, the integral is along an
arbitrary line connecting � andM which lies within the 2D
plane kz ¼ 0 in the Brillouin zone as shown in Fig. 1(b).
Likewise, the integration path for �AZ lies in the plane
kz ¼ �.
BothA andw depend on the choice of basis jujðkÞi, but

we now prove that �k1k2
is gauge invariant. Two different

bases j~unðkÞi and junðkÞi are related by a Uð2NÞ gauge
transformation:

j~unðkÞi ¼ GnmðkÞjumðkÞi; G 2 Uð2NÞ: (7)

This leads to the corresponding gauge transformation of
A and w:

~A ¼ A� iTr½G�1@kG� ¼ A� i@k logðdet½G�Þ ~w
¼ G�wGy: (8)

Using the identity Pf½XTMX� ¼ det½X�Pf½M�, it is
straightforward to verify that ~�k1k2

¼ vk1k2
is gauge

invariant.
We now further show that ð�1Þvk1k2 ¼ �1 is a Z2 quan-

tity. It follows from (4) that at the two 2D planes kz ¼ 0
and kz ¼ �, HðkÞ has the symmetry property: HðkÞ ¼
�HðkÞ�,� � U2T. This allows us to choose a real gauge
along the integration path to evaluate (6):

�jumðkÞi ¼ �jumðkÞi: (9)

Because � is antiunitary, A ¼ 0 everywhere along the

integration path. So in this gauge ð�1Þ�½k1;k2� reduces to

ð�1Þ�k1k2 ¼ Pf½wðk2Þ�=Pf½wðk1Þ�: (10)

Because jumðkiÞi belong to the two-dimensional represen-
tation of the C4 group, we have U

2jumðkiÞi ¼ �jumðkiÞi,
so that the gauge condition (9) at ki is equivalent to
TjumðkiÞi ¼ jumðkiÞi; i.e., the wave function is real.
Under this reality condition, the matrix wðkiÞ simplifies to

wmnðkiÞ ¼ humðkiÞjUjunðkiÞi: (11)

Now, by choosing a particular kind of real basis
ju2mðkiÞi � Uju2m�1ðkiÞi, wðkiÞ reduces to a standard
form w0 ¼ � � � � � � � � �, which is a direct sum of
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N 2� 2 Levi-Civita tensors. This means that in a generic
real basis, wðkiÞ can be written as

wðkiÞ ¼ OTðkiÞw0OðkiÞ; OðkiÞ 2 Oð2NÞ: (12)

So we have

Pf ½wðkiÞ�¼ det½OðkiÞ�Pf½w0�¼ det½OðkiÞ�¼�1: (13)

This proves that ð�1Þ�k1k2 ¼ �1 is a gauge invariant Z2

quantity. So both ��M and �AZ are Z2 topological invariants
which characterize the band structures in the 2D momen-
tum space kz ¼ 0 and kz ¼ �, respectively. Their product
�0 is defined for 3D time-reversal-invariant insulators with
C4 symmetry and determines the surface state property:
gapless surface states exist on (001) face only when �0 ¼ 1.
This is verified in the tight-binding model (1). The relation
between �0 and ��M, �AZ is analogous to that of strong
and weak Z2 index in 3D topological insulators [15–17].

Generalization to crystals with C6 symmetry.—The
study of topological crystalline insulators with C4 symme-
try can be generalized to hexagonal crystal structures with
C6 symmetry. In that case, (001) surface states have qua-

dratic degeneracy points either at �� or two equivalent �K.
The topological invariant is similarly defined by Eq. (6)
from the electron wave functions on the lines �K and AH
in the Brillouin zone. A concrete tight-binding model can
be obtained by placing (1) in a layered triangular lattice.
The details will be reported elsewhere.

The fact that the above Z2 invariant is only defined for
doublet bands illustrates the important interplay between
symmetry representation and topology of energy bands in
solids, a feature absent in other known classes of topologi-
cal insulators. We are not aware of a systematic mathe-
matical approach to classifying vector bundles (e.g.,
electron wave functions over the Brillouin zone) with given
representations of group action (e.g., C4 rotation) at fixed
points (e.g., high symmetry momenta ki). We hope the
concrete topological invariant (6) can stimulate continuing
research on topological crystalline insulators with other
lattice structures.

The occupied bands of real materials usually have both
doubly degenerate and nondegenerate singlet components.
Provided that the doublet bands are energetically separable
from the singlet ones (i.e., no band crossing between
them), the Z2 invariant remains well defined for the former.
The coexistence with singlet bands can, in principle,
weaken the stability of surface states [18], although this
scenario seems unlikely to happen in reality.

Surface states with quadratic degeneracy.—Quadratic
degeneracies in 2D band structure have attracted consid-
erable interest recently. The k � pHamiltonian (3) is widely
used as a low energy approximation for the band structure
of bilayer graphene near �K points. However, unlike
topological crystalline insulators, the quadratic degeneracy
there is not protected by symmetry. Instead, the band

dispersion very close to�K becomes linear due to trigonal
warping effects.
Electron interactions can drive 2D bands with quadratic

degeneracy into a variety of interesting broken symmetry
phases, including quantum anomalous Hall state, nematic
phase, etc. [13]. The competition between different ordered
phases is of great interest in bilayer graphene. It remains to
see what happens in the single-valley quadratic surface
states of topological crystalline insulators.
It would be interesting to generalize the concept of

topological crystalline insulators to interacting systems.
For example, crystal symmetry is known to play an im-
portant role in the topological classification of spin liquids
[19], spin chains [20], and Mott insulators [21]. A unifying
theory of symmetry protected topological phases remains
to be developed. We also note that analogs of topological
crystalline insulators can be potentially realized in pho-
tonic crystals.
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