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We argue that near a Kondo breakdown critical point, a spin liquid with spatial modulations can form.

Unlike its uniform counterpart, we find that this occurs via a second order phase transition. The amount of

entropy quenched when ordering is of the same magnitude as for an antiferromagnet. Moreover, the two

states are competitive, and at low temperatures are separated by a first order phase transition. The

modulated spin liquid we find breaks Z4 symmetry, as recently seen in the hidden order phase of URu2Si2.

Based on this, we suggest that the modulated spin liquid is a viable candidate for this unique phase of

matter.
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The hidden order (HO) phase in URu2Si2 is a long-
standing problem in condensed matter physics [1], and
has recently received renewed attention from both experi-
ment and theory. This metal can be characterized as a
moderate heavy fermion with a Sommerfeld coefficient
of �180 mJ=molK2. It undergoes a mean-field-like sec-
ond order phase transition at T0 ¼ 17 K, characterized by
a large jump in the specific heat. The amount of entropy
quenched at the transition is substantial (� 1:38 J=molK),
which is of order 24% of the entropy of a local f doublet.
Despite many years of intense investigation, the nature of
the hidden order remains controversial. A number of theo-
retical propositions have been made, which can be divided
into itinerant types, where the order parameter originates
from delocalized f electrons, and localized types, where
it is believed that the local levels of a U 5f2 ion are
involved [2,3].

Experimental data show evidence for both itinerant and
localized character of the order parameter. Under pressure,
the phase diagram evolves from the hidden order phase
to an antiferromagnet (AF) [4]. Recent inelastic neutron
scattering measurements show that in the HO phase, a
resonance occurs at a commensurate wave vector Q0 ¼
2�
a ð1; 0; 0Þ [5,6], which transforms into a strong elastic AF

signal for pressures P � 5 kbar. An inelastic resonance at
Q� ¼ 2�

a ð1� 0:4; 0; 0Þ occurs in both the HO and AF

phases. The compensated nature of this metal leads to
several quasinested portions of the Fermi surface, which
could account for theQ vectors of these resonances, as well
as the formation of a spin density wave [7,8]. Recent STM
experiments [9,10] reveal the opening of a gap in the
dI=dV characteristic at � T0 inside the HO phase.
Moreover, careful analyses of specific heat [2] as well as
thermal transport [11] have revealed a strong analogy with
the superconductor CeCoIn5. This body of observations,
combined with the opening of a Fermi surface gap inferred

from conductivity [12,13], angle resolved photoemission
[14], infrared spectroscopy [15,16], and the Hall effect [17]
constitute evidence for an itinerant mechanism. The local-
ized viewpoint is based on the observation that under
pressure, the first order transition between the HO and
AF phases shows no distinct changes in the transport
properties. The resistivity, for example, is continuous
through the transition [18]. From this observation, one
can expect the HO phase to have strong similarities with
the AF phase, in particular, a doubling of the unit cell.
In this Letter, we offer a new idea for explaining the

mysterious hidden order, which naturally interpolates be-
tween the itinerant and localized viewpoints. The idea
amounts to the observation that a spin liquid with spatial
modulations that break translational symmetry can form
via a second order transition with a large jump in the
specific heat, while remaining ‘‘hidden’’ to most experi-
mental probes.
The concept of a spin liquid dates from the early work of

Fazekas and Anderson that a resonating valence bond
(RVB) state might describe frustrated spin systems on a
triangular lattice [19]. Subsequent work by Anderson ex-
tended this concept to describe high temperature cuprate
superconductors [20]. In a seminal paper [21], the uniform
spin liquid was understood as being a superposition of
bonding and antibonding valence bond singlets, stabilized
by quantum fluctuations. This concept has reemerged re-
cently in the context of quantum critical points (QCP) in
heavy fermions [22–24]. The common understanding is
that the anomalous properties of these metals arise from
a competition between the formation of magnetic singlets
between localized spins, and the formation of Kondo sin-
glets. Recently, however, a body of experimental observa-
tions combined with theoretical insights has concluded that
the formation of magnetic singlets is most probably the
dominant mechanism for quenching the entropy of the
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local f spins [25]. The complexity of actinide ions, under
the combined influence of spin-orbit, Hunds rules, and
geometric frustration, create the optimal grounds to favor
the formation of valence bond singlets that eventually
quench the high temperature entropy. A spin liquid can
simply be redefined as a regime of localized spins in which
the entropy is quenched despite the absence of long range
order.

In the RVB formalism, the spin liquid can be described
within the t-J model [21], which in the limit of half filling
reduces to the Heisenberg model, with fermionic spin
operators

H0 ¼ J
X

hi;ji;��0
�y
i��i�0�y

j�0�j� (1)

where �y
i� (�i�) are creation (annihilation) operators for

fermions with spin 1=2, charge zero, and gauge chargeþe,
commonly dubbed ‘‘spinons.’’ For simplicity, we restrict
ourselves to the square lattice in two dimensions, leaving a
three-dimensional generalization more appropriate for
URu2Si2 to later work. Here � ¼ � is the spin index of
the SU(2) representation, and spinons are subject to the

constraint of one per site:
P

��
y
i��i� ¼ 1. In the mean-

field approximation, the interaction term in (1) can be
decoupled in a variety of effective fields to minimize the

free energy, including valence bond singlets,
P

�h�y
i��j�i,

valence bond ‘‘pairs,’’ h�y
i��j �� � �y

i ���j�i, or AF order,P
��h�y

i�����i�e
iQ�rii, with � the SU(2) spin matrix, and

Q the AF wave vector.
In the RVB theory for cuprate superconductors, uniform

valence bond order parameters h�y
i��j�i ¼ ’0�ri;rjþz

where z is the index of nearest or next nearest neighbors,

or flux phases h�y
i��j�i ¼ ’0e

i�=4nij where � is the flux

per plaquette and nij ¼ ðri � rjÞ=a (with a the lattice

spacing) is a bond orienting number, are commonly intro-
duced. In the �-flux phase, for example, when a spinon
cycles around a plaquette, the circulation of the phase of
the order parameter generates a magnetic flux of magni-
tude � [Fig. 1]. Here we introduce another kind of valence
bond order parameter, with real space modulations of the
bond centers, which we denote as the modulated spin
liquid (MSL):

X
�

h�y
i��j�i ¼ �i;jþz

�
�0 þ

�Q

2

X
�
e�i½�þQ�ðriþrjÞ=2�

�
(2)

We see that the value of the bond acquires an oscillating
sign from site to site. Since the phase on the bond is not
oriented, no flux is generated when a spinon cycles around
a plaquette. This order parameter doubles the unit cell
associated with the dual lattice of bonds, breaking the Z4

symmetry of the underlying square lattice [Fig. 1].
Whereas the flux phase is typical of lattices in two dimen-
sions, the MSL can easily be generalized to three
dimensions.

The interaction term in (1) can be decoupled as either a
spin liquid (SL) or an AF. For given J 	 JSL þ JAF we
consider JSL and JAF as tuning parameters in our model,
which thus acquire a phenomenological character.
Considering that the spin liquid can have both a uniform
and a modulated component, the corresponding decou-
plings are performed via Hubbard-Stratonovich transfor-
mations on each bond ij, leading to the following
Lagrangian:

L0 ¼
X
i�

�y
i�

�
@	 þ 
i þ �

X
z

miþz

�
�i�

�X
i


i þ
X

hi;ji;�
½’ij�

y
i��j� þ c:c:�

þX
hi;ji

�
1

JSL
j’ijj2 � 1

2JAF
mimj

�
: (3)

Here ’ij is the Hubbard-Stratonovich field introduced

for SL decoupling of the bond ij, and mi arises from
the AF decoupling of the site i. In the following, these
will be replaced by their constant, self-consistent, mean-

field expressions, ’ij ¼ �JSL
P

�h�y
i��j�i and mi ¼

JAF
P

��h�y
i��i�i. Note that the SL field is defined on the

dual lattice, while the AF one is defined on the initial
(square) lattice. In general, ’ij can have a nonzero imagi-

nary part, which is the case, for example, in a�-flux phase.
Here, we consider real SL fields only, which reflects a
symmetry ’ij ¼ ’ji on each bond. Such a symmetry being

incompatible with the occurrence of a magnetic flux, the
resulting modulated SL phase is necessarily of a different
nature. We introduce the Fourier transformed fields, ’q

andmq. Our analysis concentrates onto the three following

+
+

+

+
+

+

_
_

_

_
_

_

(a) MSL

+ +

+

+ +

(b) Flux Phase

1.0

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5-1.0

-8

-6

-4

-2

0

(c)
1.0

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5-1.0

6

4

2

0

(d)

FIG. 1 (color online). The MSL phase (a) and the �-flux
phase (b). Note the orientation of the bonds in the latter case.
(c),(d) The spinon dispersions for the MSL (bands 1 and 2). Note
the breaking of Z4 symmetry, and the small hole pockets for
band 1 and the small electron pockets for band 2 (white curves).
The parameters are t0 ¼ 0:1 and JSL ¼ 5, with �0 ¼ 2:11 and
�Q ¼ 1:27.
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mean-field parameters: the uniform SL, �0 	 ’ð0;0Þ, the
modulated SL, �Q 	 ’ð�;�Þ, and the Néel AF, SQ 	
mð�;�Þ, noting that (�, �) has a lower free energy than

(�, 0). In two dimensions, flux phases might still coexist
with the present MSL phase, but the study of this phe-
nomenon is beyond the purpose of the present work. The
issue of whether a gauge-invariant Lagrangian develops
crossovers or phase transitions between the Higgs, con-
fined and Coulomb phases is an old one and much related
to the presence of instantons in the system [26]. In the case
of the MSL, we argue that the breaking of Z4 symmetry is
enough to ensure a second order transition [27]. This is to
be contrasted with the �-flux phase or the possible con-
densation of the holons with modulations bie

iQ�ri [24]. In
both of those cases, the order parameter would be sensitive
to the effect of gauge fluctuations, and the presence of
instantons at finite temperature generates a crossover.

An intuitive description of the MSL phase, compared to
other possible SL phases, can be obtained from finite size
versions of our model. For two sites and JAF ¼ 0, the
effective mean-field Hamiltonian (3) can be decomposed

into bonding and antibonding eigenmodes, H12 ¼ j’12j2
JSL

þ
’12

P
�ð�y

A��A� � �y
B��B�Þ, with �B� 	 1ffiffi

2
p ð�1� þ �2�Þ

and �A� 	 1ffiffi
2

p ð�1� � �2�Þ. These modes are reminiscent

of the singlet, and the Sz ¼ 0 triplet, which diagonalize the
initial two sites, Hamiltonian (1). Invoking the saddle-point
self-consistent relation for ’12, we find a ground state

energy, hH12i ¼ � j’12j2
JSL

. The �’12 degeneracy reflects

the Uð1Þ local gauge symmetry of the Hamiltonian (1),
which is invariant with respect to the transformation

�y
2� ! ��y

2�. The ground state of the mean-field effective

model can therefore arbitrarily be chosen as a bonding or
an antibonding mode. Because of this gauge symmetry, for
the two sites model, all SL mean-fields are equivalent and
mimic the energy splitting between a singlet ground state
and one of the triplet excited states. This equivalence does
not hold anymore for bigger systems, where the number of
sites (i.e., the number of local gauge symmetries) becomes
smaller than the number of bonds. In the MSL case on the
square lattice, however, the bonding and antibonding char-
acter oscillates from site to site, since the sign of the
hopping parameter, ’ij, is oscillating.

The MSL can be considered as the true RVB parent of
the AF phase. It can also be viewed as a liquid phase of
dimers, where a resonance moves between different dimer
coverings of the lattice. In three dimensions, the liquid
phase of dimers can coexist with the breaking of transla-
tional invariance.

In the remainder of the Letter, we discuss the compati-
bility of the MSL with the HO phase in URu2Si2, and its
relation to the AF phase. To proceed, we solve a simpler
model where the conduction electrons are ignored, and the
f electrons are treated as a single orbital on a square lattice
with Q ¼ ð�;�Þ. The resulting free energy per site, allow-
ing for the coexistence of both phases, can be written as

F ¼ � kBT

N

X
k;i

ln½1þ e��!iðkÞ� þ 2ð�2
0 þ�2

QÞ
JSL

þ S2Q
JAF

(4)

where � ¼ 1=ðkBTÞ, N is the number of sites, i runs over
the two bands (each of which are Kramers degenerate), and
the spinon dispersions !iðkÞ are given by

!iðkÞ ¼ �0

2
ð�k þ �kþQÞ ��f

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0

4
ð�k � �kþQÞ2 þ ð�Q�

NN
k�Q=2Þ2 þ 16S2Q

s

(5)

with

�k ¼ �2½cosðkxaÞ þ cosðkyaÞ� � 4t0 cosðkxaÞ cosðkyaÞ
(6)

and �f the chemical potential of the f electrons adjusted

so that the system is at half filling. Here, t0 represents the
next nearest-neighbor contribution to �0. For �Q, only

near neighbor bonds are considered (with �NN the first
term of the previous equation), and to obtain a real field,
the quantity � in (2) is set to �=2. We minimize the free
energy using Powell’s method, and use a root finder to
determine �f for each choice of (�0, �Q, SQ) [28].

In Fig. 1, we show the spinon dispersions for the MSL
case. Note the pronounced breaking of Z4 symmetry,
which has been recently detected in the HO phase from
susceptibility measurements [29]. A large part of the Fermi
surface (as defined when �Q is zero) is gapped upon

ordering [1], which gives a natural explanation for the
amount of entropy quenched, and is consistent with the
Hall [17], thermal conductivity [11], and quantum oscil-
lation [30] data that suggest that 90% of the carriers dis-
appear at the transition. The dispersion for the AF phase is
very similar, except in our simplistic approximation, a full
energy gap occurs once SQ > t0�0=2. We also find that the

order parameters in each phase have similar magnitude.
One can tune between the two phases by varying JAF
relative to JSL, as shown in Fig. 2. Note that �0 and �Q

are quasidegenerate and condense at almost the same T.
They would be equal if t0 ¼ 0. Above their condensation
temperature, the free energy goes as�2kBT lnð2Þ, which is
just the free energy for a local f doublet. SQ condenses as

JAF increases, via a first order transition for low T, chang-
ing to a second order transition at higher T. In the AF
phase, all three order parameters are at first nonzero, with
�Q eventually disappearing (at low T, we find a finite �0).

The competition between the modulated component (�Q)

and the AF order (SQ) that gives rise to the first order

behavior is obvious from Fig. 2. This reproduces the quali-
tative features of the experimental phase diagram under
pressure where a first order transition occurs between the
HO and AF phases. Note that since both orders double the
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unit cell, no noticeable feature is expected to be seen in the
electrical conductivity at this transition.

Since the spinons disperse, any inclusion of a Kondo
hybridization will introduce an itinerant Fermi surface.
Moreover, from this more complete theory, we expect
that the MSL phase will be stabilized near a Kondo break-
down QCP [24], reflecting the localization of the two 5f
electrons per U site due to strong Coulomb forces. At the
localization transition, the two 5f electrons decouple from
the conduction electrons to form a spin liquid. The effec-
tive hybridization is renormalized to zero at the QCP. The
tunneling experiments confirm the opening of a hybridiza-
tion gap at � T0 between heavy and light holelike bands
[9,10]. We interpret the hybridization gap as the effective
hybridization between the spinons and the conduction
electrons. Note that the spinons are very difficult to ob-
serve; they can be detected by transport only when they
hybridize with the conduction electrons. This could explain
why the heavy band seems to disappear above T0.

Inelastic neutron scattering experiments show an inelas-
tic resonance at a commensurate wave vector Q ¼ 2�

a 

ð1; 0; 0Þ in the HO phase [6], which becomes an elastic
peak in the AF phase. Our theory also has an inelastic
resonance at QAF since the AF state has a higher free
energy in the HO phase. We speculate that the incommen-
surate peaks are due to nesting of the spinon Fermi surface.

In conclusion, the modulated spin liquid is an interesting
phase of matter which has many properties compatible
with the hidden order phase in URu2Si2. The hidden nature
of our order parameter simply relies on the fact that a spin
liquid is hardly detectable if no long range symmetry is
broken. We believe that it is a viable candidate for the
solution of this long-standing mystery.
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FIG. 2 (color online). (a) Mean-field phase diagram in the
(T, JAF) plane from (4) for a square lattice model with
t0 ¼ 0:1 and JSL ¼ 5. Below the circles curve (green), �0 turns
on and below the squares one (blue), �Q condenses. SQ con-

denses below the diamonds curve (red). For low T this is a
first order transition, at higher T a second order one. Note the
coexistence of the two phases for intermediate JAF. (b) Variation
of �0, �Q, and SQ as a function of JAF for T ¼ 0:1.
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