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We compute the equilibrium crystal structure and phase stability of iron at the �ðbccÞ � �ðfccÞ phase
transition as a function of temperature, by employing a combination of ab initio methods for calculating

electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found

to be an essential driving force behind the �-� structural phase transition in paramagnetic iron.
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The properties of iron have fascinated mankind for
several thousand years already. Indeed, iron has been an
exceptionally important material for the development of
modern civilization and its technologies. Nevertheless,
even today many properties of iron, e.g., at high pressures
and temperatures, are still not sufficiently understood.
Therefore iron remains at the focus of active research.

At low pressures and temperatures iron crystallizes in a
body-centered cubic (bcc) structure, referred to as �-iron
or ferrite; see Fig. 1. In particular, at ambient pressure iron
is ferromagnetic, with an anomalously high Curie tempera-
ture of TC � 1043 K. Upon heating, iron exhibits several
structural phase transformations [1,2]: at �1185 K to the
face-centered cubic (fcc) phase (� iron or austenite), and at
�1670 K again to a bcc structure (� iron). At high pressure
iron becomes paramagnetic with a hexagonal close packed
structure (� iron).

Density functional theory (DFT) in the local spin density
approximation gives a quantitatively accurate description
of the ordered magnetic moment and the spin stiffness of
bcc-Fe [3], but predicts the nonmagnetic fcc structure to be
more stable than the observed ferromagnetic bcc phase [4].
Only if the spin-polarized generalized-gradient approxi-
mation (GGA) [5] is applied does one obtain the correct
ground state properties of iron [6].

Stoner theory of ferromagnetism [7] can give a qualita-
tively correct description of several magnetic and structural
properties of iron, but predicts a simultaneous magnetic
and structural change at the bcc-fcc phase transition with
a local moment collapse while, in fact, the bcc-fcc phase
transition occurs �200 K above TC; see Fig. 1. Clearly,
to account for finite temperature effects of itinerant mag-
nets one requires a formalism which takes into account
the existence of local moments above TC. While the
spin-fluctuation theory, which describes the paramagnetic
state above TC as a collection of disordered moments,
gives an overall good qualitative explanation of the
pressure-temperature phase diagram of iron [8] it fails to
provide a reasonably quantitative description and, in

particular, predicts the bcc-fcc phase transition to occur
below TC.
The LDAþ DMFT computational scheme [9], a com-

bination of the DFT in the local density approximation
(LDA) with dynamical mean-field theory (DMFT) [10],
goes beyond the approaches discussed above since it ex-
plicitly includes many-body effects in a nonperturbative
and thermodynamically consistent way. LDAþ DMFT
was already used to calculate the magnetization and the
susceptibility of � iron as a function of the reduced tem-
perature T=TC [11]. The calculations gave overall good
agreement with experimental data. The problem has been
recently revisited by Katanin et al. [12] who found that
the formation of local moments in paramagnetic �-Fe is
governed by the eg electrons and is accompanied by non-

Fermi liquid behavior. This supports the results obtained
with the s-d model for the � phase of iron [13].
A recent implementation of the LDA=GGAþ DMFT

scheme in plane-wave pseudopotentials [14,15] now al-
lows one to investigate correlation induced lattice trans-
formations such as the cooperative Jahn-Teller distortion

FIG. 1 (color online). Schematic temperature-pressure phase
diagram of iron (see text).
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in KCuF3 and LaMnO3. The method was not yet used to
study structural phase transitions in a paramagnetic corre-
lated electron system with temperature (or pressure) in-
volving a change of symmetry. This will be the goal of
the present investigation.

In this Letter we employ the above-mentioned imple-
mentation of the LDA=GGAþ DMFT scheme [14,15] to
explore the structural and magnetic properties of paramag-
netic iron at finite temperatures. In particular, we will study
the origin of the �-� structural phase transformation, and
the importance of electronic correlations for this transition.
We first compute the nonmagnetic GGA electronic struc-
ture of iron [16]. To model the bcc-fcc phase transition we
employ the Bain transformation path which is described by
a single structural parameter c=a, the uniaxial deformation

along [001] axis, with c=a ¼ 1 for the bcc and c=a ¼ ffiffiffi

2
p

for the fcc structure. Here the lattice volume is kept at

the experimental volume of �-iron (a ¼ 2:91 �A) [2] in
the vicinity of the bcc-fcc phase transition, while the c=a
ratio is changed from 0.8 to 1.6. Overall, the GGA results
qualitatively agree with previous band-structure calcula-
tions [6]. In particular, the nonmagnetic GGA yields the
fcc structure to be more energetically favorable than the
bcc one (see Fig. 2).

Next we apply the GGAþ DMFT approach [14,15]
to determine the structural phase stability of iron. For
the partially filled Fe sd orbitals we construct a basis
of atomic-centered symmetry-constrained Wannier func-
tions [15]. The corresponding first-principles multiband
Hubbard Hamiltonian has the form

Ĥ ¼ ĤGGA þ 1

2

X

imm0;��0
U��0

mm0 n̂im�n̂im0�0 � ĤDC; (1)

where n̂im� ¼ ĉyim�ĉim� and ĉyim� (ĉim�) creates (destroys)
an electron with spin � in the Wannier orbital m at site i.

Here ĤGGA is the effective low-energy Hamiltonian in the
basis of Fe sd Wannier orbitals. The second term on the
right-hand side of Eq. (1) describes the Coulomb interac-
tion between Fe 3d electrons in the density-density ap-
proximation. It is expressed in terms of the average
Coulomb repulsion U and Hund’s rule exchange J. In
this calculation we use U ¼ 1:8 eV which is within
the theoretical and experimental estimations �1–2 eV

and J ¼ 0:9 eV [17]. Further, ĤDC is a double-counting
correction which accounts for the electronic interactions
already described by the GGA (see below).
In order to identify correlation induced structural trans-

formations, we calculate [14] the total energy as

E ¼ EGGA½�� þ hĤGGAi �
X

m;k

�GGAm;k

þ 1

2

X

imm0;��0
U��0

mm0 hn̂im�n̂im0�0 i � EDC; (2)

where EGGA½�� denotes the total energy obtained by

GGA. Here hĤGGAi is evaluated as the thermal average
of the GGA Wannier Hamiltonian. The third term on the
right-hand side of Eq. (2) is the sum of the Fe sd valence-
state eigenvalues. The interaction energy, the fourth term
on the right-hand side of Eq. (2), is computed from the
double occupancy matrix hn̂im�n̂im0�0 i which is calculated

in DMFT. The double-counting correction EDC ¼
1
2

P

imm0;��0U��0
mm0 hn̂im�ihn̂im0�0 i corresponds to the average

Coulomb repulsion between electrons in the Fe 3dWannier
orbitals calculated from the self-consistently determined
local occupancies [18].
To solve the realistic many-body Hamiltonian (1) within

DMFT we employ quantum Monte Carlo (QMC) simula-
tions with the Hirsch-Fye algorithm [19]. The calculations
for iron are performed along the Bain transformation path
as a function of the reduced temperature T=TC. Here TC

corresponds to the temperature where the spin polarization
in the self-consistent GGAþ DMFT solution vanishes.
We obtain TC � 1600 K which, given the local nature of
the DMFT approach, is in reasonable agreement with
the experimental value of 1043 K and also with earlier
LDAþ DMFT calculations [11]. We find that TC depends
sensitively on the lattice distortion c=a. It has a maximum
value for the bcc (c=a ¼ 1) structure and decreases rapidly
for other values. In particular, for all temperatures consid-
ered here the fcc phase remains paramagnetic.
In Fig. 2 we show the variation of the total energy of

paramagnetic iron with temperature along the bcc-fcc Bain
transformation path. The result exhibits two well-defined

energy minima at c=a ¼ 1 (at low temperature) and c=a ¼
ffiffiffi

2
p

(at high temperature), corresponding to the bcc and fcc
structures, respectively. We find that for decreasing tem-
perature the inclusion of the electronic correlations among
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FIG. 2 (color online). Variation of the total energy of para-
magnetic iron obtained by GGA and GGAþ DMFTðQMCÞ
for different temperatures. The total energy is calculated along
the bcc-fcc Bain transformation path with constant volume
(a ¼ 2:91 �A for the bcc phase). Error bars indicate the statistical
error of the DMFT (QMC) calculations.
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the partially filled Fe 3d states considerably reduces the
total energy difference between the � and � phases. In
particular, the bcc-to-fcc structural phase transition is
found to take place at Tstruct � 1:3TC, i.e., well above TC

[20]. Our result for �T � Tstruct � TC, the difference be-
tween the temperatures at which the magnetic transition
and the structural phase transition occur, is in remarkable
agreement with the experimental result of �T � 200 K.
This finding differs from conventional band-structure
calculations which predict the magnetic and structural
phase transition to occur simultaneously. Both Tstruct and
TC vary sensitively with the value of the Coulomb repul-
sion U employed in GGAþ DMFT calculation. We find
that Tstruct increases for increasing U values, whereas
TC decreases, in agreement with the Kugel-Khomskii
theory [21].

In addition, we performed LDAþ DMFT calculations
to determine the phase stability of iron at the bcc-fcc phase
transition as a function of temperature. In contrast to the
standard band-structure approach where it is essential
that the spin-polarized GGA is used to obtain the correct
ground state properties of iron, we find that both the
LDAþ DMFT and GGAþ DMFT schemes give qualita-
tively similar results. In particular, both schemes find the
bcc-to-fcc structural phase transition at �1:3TC, i.e., well
above the magnetic transition. Explanations of the bcc-fcc
structural phase transition and the fact that Tstruct � TC

obviously need to go beyond conventional band-structure
theories. This clearly demonstrates the crucial importance
of the electronic correlations among the partially filled
Fe 3d states.

Next we perform a structural optimization and compute
the equilibrium volume and the corresponding bulk modu-
lus of paramagnetic iron (see Table I). The bulk modulus is
calculated as the derivative of the total energy as a function
of volume. We find that at the bcc-fcc phase transition
the equilibrium lattice volume simultaneously shrinks by
�2%, a result which is in good agreement with the experi-
mental value of�1% [1]. The volume reduction is accom-
panied by an increase of the calculated bulk modulus.

Overall, the equilibrium volume and bulk modulus
computed by GGAþ DMFT agree well with the experi-
mental data [1,2,22].
Finally we compute the square of the instantaneous

local moment hm2
zi ¼ hðPm½n̂m" � n̂m#�Þ2i of paramagnetic

iron for the distortions c=a considered here. In Fig. 3 we
show the result plotted for various temperatures. At low
temperatures, the squared local moment depends quite
strongly on the value of c=a, and is maximal in the bcc
and minimal in the fcc phase, respectively. As expected,
above TC, the square local moment gradually increases
with temperature and becomes essentially independent of
c=a, as indicated by the curve for T ¼ 3:6TC in Fig. 3 (we
note that this is only a hypothetical curve since at such an
elevated temperatures iron is already in its liquid state).
This finding has important implications for our understand-
ing of the actual driving force behind the bcc-to-fcc para-
magnetic phase transition. For this we note that the squared
local moment hm2

zi determines the magnetic correlation
energy � 1

4 Ihm2
zi, which is an essential part [23] of the

total correlation energy of the Hamiltonian (1). At high
temperatures, when the local moment is almost indepen-
dent of c=a and the GGAþ DMFT approach finds the fcc
phase to be stable, the contribution of the magnetic corre-
lation energy to the bcc-fcc total energy difference is seen
to be negligible. This changes markedly when the tem-
perature is lowered. Namely, upon cooling the contribution
of the magnetic correlation energy gradually increases
and becomes strong enough to overcome the DMFT kinetic

energy loss Ekin ¼ EGGA½�� þ hĤGGAi �P

m;k�
GGA
m;k for

the bcc phase as compared with the fcc phase. Thereby
the bcc phase with its larger value of the local moment is
stabilized at T < 1:3TC. We therefore conclude that the
bcc-to-fcc paramagnetic phase transition is driven by the
magnetic correlation energy.
In conclusion, we employed the GGAþ DMFT many-

body approach to compute the equilibrium crystal structure

TABLE I. Calculated lattice constant a for the bcc lattice,
volume V, and bulk modulus B for the equilibrium phase of
paramagnetic iron as a function of T=TC.

T=TC

Equilibrium

phase a, Å V, au3 B, Mbar

0 (GGA) bcc 2.757 70.71 2.66

fcc 2.737 69.20 2.82

0.9 bcc 2.880 80.64 1.48

1.2 bcc 2.883 80.84 1.50

1.4 fcc 2.861 79.03 1.61

1.8 fcc 2.862 79.13 1.59

Experimental

data [1,2,22]

bcc/fcc 2.88–2.91 1.62–1.76
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FIG. 3 (color online). Variation of the square of the local
magnetic moment calculated by GGAþ DMFT for paramag-
netic iron.
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and phase stability of iron at the bcc-fcc transition. In
particular, we found that the bcc-to-fcc structural phase
transition occurs well above the magnetic transition, and
that the magnetic correlation energy is essential to explain
this structural transition in paramagnetic iron. The above
result and those for the equilibrium lattice constant and the
variation of the unit cell volume at the bcc-fcc phase
transition agree well with experiment.
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