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A new class of functional materials with giant nonhysteretic strain responses to applied fields is

considered. They are decomposed two-phase systems consisting of single-domain nanoprecipitates of a

low-symmetry phase. Their strain response is caused by the field-induced change of structural orientation

of the domain states of these precipitates. The superresponse follows from the novel concept of structural

anisotropy that is analogous to the magnetic anisotropy. Its vanishing produces a new glasslike structural

state. The developed phase field theory and modeling allow us to formulate criteria for searching

superresponsive two-phase nanostructured alloys.
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Two-phase nanostructured alloys, consisting of coherent
nanoprecipitates of the low-symmetry phase from the cu-
bic matrix, are well known for their excellent mechanical
properties due to the precipitation hardening. However,
they have never been considered as promising functional
materials. In this Letter, we introduce a new concept of
structural anisotropy to consider the effects of field-
induced crystal lattice rearrangement on their strain re-
sponses. It is demonstrated that these materials can have
remarkable strain responses to applied fields. In particular,
they can have a combination of giant low- or nonhysteretic
field-induced strain responses, high blocking forces, and
good mechanical properties. This suggests that some nano-
dispersive two-phase alloys may be functionalized to have
supreme properties.

To describe the crystal lattice rearrangement mode,
we introduce a strain tensor,"0ij, called conditional eigen-

strain. The conditional eigenstrain, "0ij, is a relaxing six-

component long-range order parameter fully defined by
three principal strains (eigenvalues) and three correspond-
ing principal directions (eigenvectors). For a low-
symmetry phase, the n symmetry-related energy minimiz-
ing structural states are characterized by"0ij ¼ "00ij ðpÞ,
(p ¼ 1, 2; . . . ; n), where "00ij ðpÞ are the stress-free

Eshelby eigenstrains [1,2]. A transition between two states
of "00ij ðpÞ can be accomplished by small atomic displace-

ments, which, for example, results in the 90� rotation of
principal directions of "0ij for the tetragonal phase, and does

not require a 90� rotation of the entire lattice of the domain
[Figure 1(a)]. A newly introduced notion of structural
anisotropy is described by an energy function of the ori-
entation of principal directions of "0ij, which can be derived

from the specific free energy,fð"0ijÞ , by its partial minimi-

zation with respect to eigenvalues of "0ij.

The structural anisotropy is analogous to the magnetic
anisotropy in ferromagnets, wherein the energy is
directionally dependent on a vector (magnetization)

rather than a tensor [3]. Like magnetic anisotropy that
crucially influences main characteristics of ferromagnets
[3], the structural anisotropy distinguishes structurally hard
and soft materials, affects similar characteristics of struc-
tural materials, such as the width, size and mobility of
structural domains, and determines the hysteresis.
To quantify the structural anisotropy, we approximate

fð"0ijÞ by a Landau polynomial [4,5]:

fð"0ijÞ ¼ 1
2Cijkl"

0
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0
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where "0ij ¼ 0 describes the stress-free cubic parent phase;

Cijkl and Dijklsm are tensor coefficients with the symmetry

of the parent cubic phase, summation over repeated indices
is implied. Cijkl are elastic constants. In general, these

coefficients are functions of temperature and composition.
The general behavior of fð"0ijÞ can be illustrated in its

subspace of uniaxial strain defined by f ¼ fð"�;nÞ, where
n is a direction of uniaxial "0ij, and "� is a typical value

of the strain while ratios between principal values of "0ij
are fixed. Figures 1(b)–1(d) show the surfaces f ¼ fð"�;nÞ

FIG. 1 (color online). (a) Schematic flipping of a tetragonal
unit cell through small atomic displacements, and (b)–(d) the
free energy dependence on the representative strain, "�, and
direction n in the (001) plane. The transition, i.e., from 1 to 3,
goes through intermediate states like 2 in (a), and a projection
of the transition path is indicated by dots in (b)–(d). The red
arrow in (b–d) shows the energy barrier along this path. A local
minimum at the top of (b)–(d) (at "� ¼ 0) describes the meta-
stable parent phase.
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for different structural anisotropies and n located in
the (001) plane. Positions of global minima in Figs. 1(b)
and 1(c) at n k h100i indicate that the stable phase is
tetragonal. The value of the energy barriers between the
minima determines the easiness of a rotational transition
between them distinguishing structurally hard and soft
materials. Application of the external fields can eliminate
the barriers greatly reducing the hysteresis. Vanishing of
the structural anisotropy, Fig. 1(d), eliminates the barriers
and corresponds to a limit case of structural isotropy. This
occurs when (1) becomes an expansion in invariants of"0ij,

which areð"0iiÞ2, "0ij"0ij, "0ij"0jk"0ki, "0ij"0ij"0kk, and, etc., with
scalar expansion coefficients. Since "0ij in this case is

‘‘decoupled’’ from the crystallographic directions of the
parent phase, an unusual structure consisting of structural
nanodomains with all possible (spherically degenerated)
orientations is resulted. This structure has infinite rota-
tional flexibility, and can be perceived as structural glass
that is analogous to the ferromagnetic glass.

The structural anisotropy discussed above is only an
intrinsic part of the total anisotropy describing the free
energy of the lattice rearrangement of ideal crystals.
There is another source of structural anisotropy associated
with the coherency strain required to restore the lattice
compatibility. Its energy depends on the volume of the
nanodomains, lattice orientation of precipitates, and their
shapes and positions. Therefore, the extrinsic anisotropy is
a structure-sensitive extrinsic property. In particular,
it is described by the Khachaturyan-Shatalov theory
[2,6]. The extrinsic anisotropy is analogous to the anisot-
ropy produced by the magnetostatic energy described
by the magnetic shape factor [7] that also depends on
shapes and positions of magnetic particles [2,8]. In fact,
this analogy is rooted in the mathematic similarity of both
interactions [2,7,9].

In this Letter, we study the formation of mixture of the
cubic and tetragonal phases obtained by decomposition
during ‘‘annealing’’ of the supersaturated cubic solid so-
lution, which was quenched into the two-phase region. We
consider microstructures at very early stages of the growth
and coarsening when dimensions of precipitates of the
tetragonal phase are still within the nanoscale range. The
strain response of the obtained systems to the applied stress
is investigated (applied magnetic fields could be similarly
considered). The nanosize of particles guarantees the
single-domain state, and thus reduces a hysteresis by elim-
inating energy dissipation associated with domain wall
movements. The evolution of composition, cðr; tÞ, and
conditional eigenstrain, "0ijðr; tÞ, are based on the phase

field microelasticity kinetic equations [10]:
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where t is time, F is the total nonequilibrium free energy,
�F=�"0ij and �F=�c are the driving forces, L and M

are the kinetic coefficients, and �"ðr; tÞ and �cðr; tÞ are
Langevin noise terms. The total free energy functional is
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where fð"0ij; cÞ is the anharmonic nonequilibrium energy

density function, �" and �c are the gradient coefficients.
The second term is the coherency strain energy caused by
the crystal lattice misfit associated with "0ijðrÞ [2,6], and the
third term is the energy of interaction with the applied
stress, �app

ij . ~"0ijðkÞ is the Fourier transform of "0ijðrÞ,
n ¼ k=k is the unit vector, and �mnðnÞ ¼ ðCmijnninjÞ�1.

In our modeling we writefð"0ij; cÞ as
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where the structural anisotropy enters only the quadratic
terms in"0ij, characterized by � ¼ C11 � C12 � 2C44, and

other coefficients are scalars.
Equation (2) is solved in the reduced forms (denoted by

superscript asterisk * ): stress and strain are measured
in units of "3, ("0�ij ¼ "ij="3, �0�

ij ¼ �ij=C44"3, "3 ¼
ðct � acÞ=ac and "1 ¼ ðat � acÞ=ac where ct, at, and ac
are lattice parameters of the teteragonal and cubic phases,
respectively); the energy in unit of the typical strain energy,
�f ¼ C44"

2
3; all lengths in units of the physical length,

l (r� ¼ r=l); the time t in units of the typical diffusion
time, � (t� ¼ t=�).
We use A0

� ¼ 7500, A1
� ¼ �4:5787, A2

� ¼ 5:5319,
c1 ¼ 0:25, c2 ¼ 0:5, c� ¼ 0:235, c� ¼ 0:52, ��

c ¼ 60,

��
" ¼ 3:0, L� ¼ 50:0, and M� ¼ 1:0 (for decomposition

only), which estimates l� 1 nm and the size of particles
�10 nm. Other reduced values are listed in the upper part
of Fig. 2, which provide about the same minimum energy
density at "0�33 � 1:00 and "0�11 ¼ "0�22 ��0:300 for

different�� ¼ �=C44. The behavior of the chosen
Landau free energy is shown in the lower part of Fig. 2.
The results presented below are obtained by the use of the
periodical boundary conditions.
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Figure 3(a) shows a typical 3Dmicrostructure formed by
decomposition under constant uniaxial stress, where �� ¼
�0:05. Figure 3(b) shows the strain responses generated by
the rotation of tetragonality axis under periodical uniaxial
stresses. In addition to the conventional Hookean strain
("kl ¼ C�1

ijkl�ij), this rotational strain is calculated by the

rotation of "0ij, as ��"ij ¼ 1
V

R
�"0ijðrÞd3r in the homoge-

neous modulus approximation [1,2]. Figure 3(b) thus
shows that macroscopic strain responses are significantly
magnified by the rotational flexibility of nanoparticles,
which is recoverable and can be nonhysteretic. In fact,
since ��"ij � �"00ij !, �"00ij � "00ij and "00ij can be up to

�10%, ��"ij can thus be regarded a giant strain, where !

is the volume fraction of the rotated low-symmetry
phase [2,11].

Further 2D modeling of the nanostructure formation
without applying stress during decomposition shows that
decreasing structural anisotropy increases the stress-
induced deviation of the principal directions of "0ij from

the h10i directions. In the limit isotropic case, �� ¼ 0, the
structure is glasslike: its nanoprecipitates have random
orientation of the principal directions of "0ij (Fig. 4). The

modeling also shows that if �� � �0:2 and the stress is
applied along the h10i directions, the rotational strain
becomes nonrecoverable. However, as in Fig. 5, the strain
responses to stress applied along the h11i directions are
practically nonhysteretic for all simulated cases: the higher
the structural anisotropy, the bigger the blocking force
and the narrower the hysteresis loop.

Prototyping strain responses caused by rotational flexi-
bility of the low-symmetry phase becomes possible only

after we introduce the relaxing conditional eigenstrain, "0ij.

This is an additional degree of freedom to the conventional
Eshelby theory of coherent inclusions with fixed eigen-
strain [1,2]. In fact, the Eshelby theory corresponds to a
limiting case of infinitely ‘‘hard’’ materials.
While Eq. (1) defines the intrinsic structural anisotropy,

the extrinsic structural anisotropy is provided by the co-
herency elastic strain, which stabilizes the initial configu-
ration, modifies energy barriers for rotating "0ij, and

changes the blocking force. To minimize the hysteresis,
we have to consider both intrinsic and extrinsic contribu-
tions to the energy barriers that are responsible for the
hysteresis and recoverability.
A generic way to this goal is to apply stress along the

h111i direction (or h11i direction in 2D). In this case,
instead of flipping between h100i domains, the stress ro-
tates "0ij of all particles toward the common h111i direc-
tion, without overcoming any intrinsic energy barrier. Our
computer modeling shows that the surmounted extrinsic
energy barriers are also minimized in this case, which leads
to practically monotonically increasing the total energy

FIG. 2 (color online). Reduced parameters for different struc-
tural anisotropies (upper). Compositional dependence of the free
energies of the cubic and tetragonal phases (lower).

FIG. 4 (color online). (a) 2D microstructure of structurally
isotropic system (� ¼ 0) and (b) an inset of (a). Nanoparticles
are bordered by white lines. In (b) the principal directions of "0ij
corresponding to its maximum principal value is shown by
streaks. Simulation size is512� 512, �c ¼ 0:29, t� � 24, and
no stress is applied during decomposition.

FIG. 3 (color online). (a) Microstructure obtained by decom-
position under constant stress, and (b) strain responses induced
by the rotation of "0ij to periodically applied stress along different

directions. The simulation size is 80� 80� 80, �c ¼ 0:29,
�� ¼ �0:05 and t� � 8:8. The constant stress applied during
decomposition,��

app ¼ 0:03, is applied along [001].
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upon deviation of"0ij. Removing the stress thus relaxes "0ij
to its initial configuration, manifested as recoverable and
nonhysteretic or weakly-hysteretic strain responses. In
fact, similar arguments are even applicable to any tetrago-
nal single crystal and single phase system, including single
phase martensitic systems with multidomain structure.

For some microstructure engineered cases, there are
alternative ways to minimize hysteresis. The [001] oriented
domains are predominantly formed by decomposition
under the [001] oriented stress [Fig. 3(a)]. Hence, there is
no flipping of tetragonality under stress applied along [101]
direction. Instead, it just rotates [001] domains toward
[101]. This rotation is barrierless and thus has no hysteresis
[Fig. 3(b)].

There are experimental findings consistent with our
theory and modeling. About seven-fold strain softening—
a strain increase at the same stress—is observed in the Fe-
30%Pd alloy in a premartensitic two-phase state, which has
been related to the formation of nanodispersions of tetrago-
nal particles in the cubic matrix (tweed structure) [12]. The
elastic softening associated with a displacive reorientation
of randomly distributed nanodomain particles was reported
in doped shape memory NiTi alloys [13,14]. We may also
speculate that the nonhysteretic stress-induced rotation of
tetragonality directions of the observed nanoprecipitates is
the origin of the high elastic limit of the classical precipi-
tation hardening Cu-Be alloy with the tweed structure [15].
A significant shape memory effect (SME) was recently
discovered in this alloy [16]. It is also possible that
the giant pseudoelastic deformation (� 2:3%), and high
strength observed in Gum Metals based on Ti-Nb alloys
[17–19] are of the same nature.

In summary, specially chosen two-phase nanostructured
alloys may have giant nonhysteretic strain responses to
applied stress, excellent mechanical properties due to the
precipitation hardening, and important martensitic features

(SME and superelasticity). Such materials can also have
giant magnetostriction if they are magnetic and the reor-
ientation of single-domain states of nanoprecipitates is
induced by magnetic field. The proposed theory and mod-
eling provide a guideline for developing a new class
of functional materials with giant nonhysteretic strain
response, large blocking force, and good mechanical
properties.
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