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Sulci are localized furrows on the surface of soft materials that form by a compression-induced

instability. We unfold this instability by breaking its natural scale and translation invariance, and compute

a limiting bifurcation diagram for sulcfication showing that it is a scale-free, subcritical nonlinear

instability. In contrast with classical nucleation, sulcification is continuous, occurs in purely elastic

continua and is structurally stable in the limit of vanishing surface energy. During loading, a sulcus

nucleates at a point with an upper critical strain and an essential singularity in the linearized spectrum. On

unloading, it quasistatically shrinks to a point with a lower critical strain, explained by breaking of scale

symmetry. At intermediate strains the system is linearly stable but nonlinearly unstable with no energy

barrier. Simple experiments confirm the existence of these two critical strains.
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Sulci are usually seen in combination with complemen-
tary protrusions known as gyri on the surface of the primate
brain, but are also seen on the palm of our hand, in our
elbows and knees, in swollen cellular foams (such as
bread) and gels, and in geological strata; a few representa-
tive examples are shown in Fig. 1. While observations of
sulci are ancient, their systematic study is fairly recent; an
early reference is the reticulation patterns in photographic
gelatin [1], and there has been a small interest in these
objects both experimentally [2–6] and theoretically
[3,7–9], starting with the pioneering work of Biot [10]
over the past 50 years. Despite this, there is no careful
analysis of the fundamental instability and bifurcation that
leads to sulci. Here we study the formation of a sulcus in a
bent slab of soft elastomer, e.g., PDMS: as the slab is bent
strongly, it pops while forming a sulcus that is visible in the
lower right panel of Fig. 1; releasing the bend causes the
sulcus to vanish continuously, in sharp contrast with famil-
iar hysteretic instabilities that pop in both directions. We
find that sulcification is a fundamentally new kind of non-
linear subcritical surface instability with no scale and a
strongly topological character, yet has no energetic barrier
relative to an entire manifold of linearly stable solutions.
We also argue that sulcification instabilities are relevant to
the stability of soft interfaces generally, and provide one of
the first physical examples of the consequences of violating
the complementing condition [11] (during loading) and
quasiconvexity at the boundary [12] (during unloading),
keystones in the mathematical theory of elliptic partial
differential equations and the calculus of variations.

To understand the unusual nature of sulcification,
we first recall Biot’s calculation for the linear instability
of the surface of an infinite half-space of an incompressible

elastomer that is uniformly stressed laterally. Because the
free surface is the softest part of the system, and there is no
characteristic length scale in the equations of elasticity or
in the boundary conditions, instability first arises when the
Rayleigh surface wave speed vanishes. For incompressible
rubber, Biot [10] showed that this threshold is reached
when the compressive strain exceeds 45.3% [10], at which
value, all surface modes are unstable while the fastest
growing one has an infinite wave number. Since every

FIG. 1 (color online). Examples of sulci in (a) a primate brain
[20], (b) the arm of an infant, (c) sliced bread under lateral
compression, and (d) the bent slab of PDMS used in our experi-
ments. The results of a numerical simulation shown in red (light
gray) capture the form of the sulcus in the gel, as described in the
text, with no adjustable parameters. The scale bar represents
2.3 cm in (a) 5 cm in (b) 2.5 cm in (c) and 0.33 cm in (d).
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free surface looks like a half-space locally, Biot’s instabil-
ity lurks at every free boundary. Finite geometries typically
break this infinite degeneracy and lead to a hierarchy of
ordinary buckling instabilities that preempt the surface
instability [13]. However, since Biot’s calculation was
limited to a linear analysis of the problem, it could not
address the question of whether the instability was super-
critical or subcritical or its ultimate nonlinear saturation.
Since the basic problem is scale-free and translation

invariant (the sulcification instability can arise anywhere
along the surface), the nonlinear problem is numerically
intractable without explicit regularization and a careful
limiting process requiring that we unfold the sulcus liter-
ally and figuratively.
Therefore we consider the bent strip geometry shown in

Fig. 1(d), and break scale invariance by assuming that a
thin skin of a stiff material is attached to the surface of the
bent slab. Furthermore, the curvature maximum at
the bottom of the horseshoe where the highest strains are
achieved naturally breaks translation invariance. For planar
deformations, the total energy of the system is given by

EðxÞ ¼ �0
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where xðXÞ is the deformation of a strip occupying a
rectangular material volume � � R2 and subject to the
incompressibility constraint detðrxÞ ¼ 1, �0 is the shear
modulus of the incompressible elastomer, B0 is the stiff-
ness of a semiflexible skin and s is the arc length parameter
of the upper surface � � @�. Our model corresponds to
having a simple neo-Hookean elastomer free energy for the
bulk and a Bernoulli-Euler curvature energy for the skin.
To understand the onset of the sulcification instability, we
extremized the energy above using a custom-built finite
element method with continuous strains and a hierarchical
mesh (see supplementary information (SI), Ref. [14]). We
enforced incompressibility and self-contact using pressure
fields and by assuming left-right symmetry about the sul-
cus. This model has three relevant length scales: a regu-

larization length lr ¼
ffiffiffiffiffi
B0

�0

3

q
, the length of the strip Ls, and its

thickness Ws. We use �0 and Ls to scale all quantities so

that B ¼ B0

�0L
3
s
and the aspect ratio of the strip Ls=Ws are the

only dimensionless parameters.
Our simulations start with an initially flat rubber strip

that is bent and quasistatically compressed between paral-
lel, rigid plates separated by a distance �. As the control
parameter � is decreased, compressive strain on the inner
surface of the strip increases and ultimately drives sulcifi-
cation. To ensure that the scale of the furrow is not numeri-
cally under-resolved, we use a recursively refined finite
element mesh near the incipient sulcus to keep the mesh
scale roughly an order of magnitude smaller than lr (see SI,
Sec. B). Using a novel continuation method for variational
inequalities (see SI, Sec. C), we computed both stable and
unstable extrema of EðxÞ, and explored the limit B ! 0.
This yields the central result of our study, the family of
bifurcation diagrams shown in Fig. 2(a), where we plot the
minimum height of the slab h as a function of �.
Each h� � curve is a bifurcation diagram for a different

value of B: solid lines represent linearly stable solutions,
while the dotted lines represent linearly unstable solutions.
Each curve follows the characteristic S shape of a hyste-
retic transition, associated with a sudden change in h and

FIG. 2 (color online). (a) Bifurcation diagrams for the bent
strip geometry shown in Fig. 1(d), showing the scaled height h as
a function of the scaled compression �, the bifurcation parame-
ter for B 2 ½10�7 � 10�12� [yellow (light gray) - magenta
(medium gray)]; solid lines mark stable equilibria and dotted
lines mark unstable equilibria; thick gray lines highlight the
asymptotic T-shaped diagram delimited by the Biot point on
the left and the T point on the right. Solutions on the upper stable
branches have smooth surfaces. Insets a–c show the structure
(color ¼ strain energy) for typical solutions on the other
branches, rescaled to a fixed size. (b) The upper two curves
show compressive strain in terms of the principal stretch �x at
the eventual location of the sulcus X ¼ 0 on the smooth branch
for values of � at the right and left fold points, respectively, for
each B. The lowest curve shows the smallest value 1� �x

attained on the surface outside the sulcus for the solution at
the right fold point. The dashed lines correspond to the upper-
critical strain predicted by Biot (upper line), and the new lower-
critical strain extrapolation from our simulations (lower line).
(c) The energy barrier �E for sulcification as a function of B
sampling the solution at even intervals between the left (bottom
curve) and right fold (top curve) points.
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formation or relaxation of a finite size sulcus when a
critical value of � is passed in loading or unloading. For
every value of B, extrema on the top branch have smooth
surfaces, those on the middle branch have a pendant of size
lr [see inset a of Fig. 2(a)], and those on the bottom branch
have a self-contacting sulcus (insets b and c). As B is
decreased, (B 2 ½10�7 � 10�12�, lr=Ls 2 ½4:6� 10�3 �
10�4�), the hysteresis in a typical loading cycle becomes
atypically one-sided as the branch of unstable extrema
(dotted lines) swings up toward the top stable branch and
the S-shaped bifurcation diagrams converge to a master
T-shaped diagram traced by the thick gray line with two
critical points.

For fixed � and B an unstable solution represents a
saddle point in the energy landscape; its energy relative
to the configuration with a flat surface is �E ¼ Euð�Þ �
Esð�Þ where Euð�Þ and Esð�Þ are the energies of the
unstable and top, stable branches at � respectively, and is
an upper bound on the height of the barrier to nucleating a
sulcus. Figure 2(c) shows �E as a function of B and
confirms the convergence of the family of bifurcation
diagrams toward the limiting T-shaped bifurcation dia-
gram, as well as the existence of a nonlinear surface
instability with no energetic barrier over an extended range
of strains. We see that the instability thus differs signifi-
cantly from traditional first order phase transitions in that
the deformation is continuous, occurs in simple elastic
continua, and is well defined in the limit of vanishing
surface energy. The presence of a metastable region brack-
eted by a pair of critical strains along which the stable and
unstable solutions coincide as the skin becomes vanish-
ingly thin naturally explains the discrepancy between
Biot’s prediction and a large number of experiments on
creasing and sulcification [4] (and references therein) over
the past half century. Unfolding the instability without
breaking translation symmetry at the surface, e.g., in a
swollen, adhered layer of gel, then naturally leads to
extreme sensitivity to imperfections, and a hierarchy of
complex subcritical instabilities connecting Biot’s instabil-
ity and buckling (see SI, sec. E), and the ability to control
sulcification [6].

As B ! 0, the sequence of saddle-node fold points
encountered during loading converges to a limiting, infi-
nitely sharp fold point when the surface strain at the lowest
point on the inner surface of the horseshoe,X ¼ 0, reaches
a critical value of 45.6% consistent with Biot’s classical
result; in Fig. 2(b) we see the convergence of the critical
compressive stain, 1� �x where �x is the principal stretch
of the deformation gradient rx along the free surface, for
finite B to Biot’s predicted value at B ¼ 0. A numerical
linearized spectral analysis of the loaded slab also con-
firmed Biot’s prediction that the Rayleigh surface wave
speed vanishes at X ¼ 0 just as the critical strain is
achieved, and corresponds to the failure of the comple-
menting condition [11,15], wherein infinitesimal periodic

solutions at the boundary grow at a rate that diverges as the
inverse of the wavelength. Over-damped dynamical simu-
lations—which trace steepest descent contours of the en-
ergy landscape—reveal that nonlinear effects reorganize
these surface waves into a self-similar furrowing process;
after a short transient, depending on B, the growth of a
sulcus, which occurs via rolling, not snapping, is described

by the self-similar form xsðX;�?Þ þ ffiffiffiffiffi
�t

p
v?ðX=

ffiffiffiffiffi
�t

p Þ
where � is a dimensional constant and v? is the numeri-
cally computed scale-invariant form of the sulcus [15], and
xsðX;�Þ is the branch of smooth solutions and �? is the
value of � at Biot’s limiting fold point.
The complementary sequence of saddle-node fold points

for decreasing B encountered during unloading are actually
‘‘corners’’ associated with the loss or gain of a self-
contacting sulcus as the unstable surface pendant just
closes to form a cavity of fixed size lr. As these corners
converge to the limiting ‘‘T point,’’ the maximal surface
strain outside the self-contacting region approaches a limit-
ing value of 35.4% that is attained at a sequence of points
converging to X ¼ 0. The convergence to this strain is
traced by the lowest curve in Fig. 2(b) with the asymptote
marked by the dashed line. The middle solid curve of
Fig. 2(b) is another estimate of the critical strain computed
by measuring the strain atX ¼ 0 for a sequence of extrema
for corresponding values of � on the top branch. The
T-point critical strain (like the Biot critical strain) is
universal for free surfaces of incompressible materials,
consistent with recent experimental observations [4,6];
however they both change with applied normal stress
(i.e., indentation), for compressible materials [15] etc.
To understand why the T-point bifurcation and the entire

unstable manifold are not captured by linearized analysis,
we note that before the sulcus reaches the regularization
scale lr, it shrinks according to the form xsðX;�Þ þ
lð�ÞvTðX=lð�ÞÞ where lð�Þ � 0 vanishes at the T point
and vT � v?. (See insets b and c in Fig. 2(a), and the
relative scale factor of 6.5.) Since the elastic stress is
determined by rx, this transformation shrinks the size of
the sulcus without altering the local stress balance; there-
fore all the material and contact nonlinearities remain
relevant even for vanishingly small sulci.
We tested our theory with experiments using a commer-

cial Sylgard 180 Elastomer to form 36� 26� 4 mm slabs
that were placed between parallel rigid plates attached to
linear motors and compressed in small increments of
200 �m in a second, separated by 50 s to allow for the
equilibration of the slab. We tracked sulcification optically
by imaging the refracted image of a laser sheet that passed
through the slab along its bending axis. When the sulcus
formed it sharply refocused the laser sheet into an almond-
shaped caustic pattern surrounding a dark shadow
(SI, sec. D). Figure 3 (left) shows the evolution of a central
raster scan of the caustic pattern during a loading cycle
(vertical axis) (see SI, sec. D). Analogous ray traced light
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distributions for the simulation, using the measured laser
profile and assuming left-right symmetry, the measured
system geometry, and B ¼ 10�11 (physically lr �
18 �m), are also shown in Fig. 3 (right) for comparison;
the numbered red dots correspond to the numbered red dots
in Fig. 2(a). We see that with no free parameters we can
capture the one-way hysteretic transition associated with
sulcification.

The emergence of the T and Biot points, and intervening
metastable region in the B ! 0, can be understood in terms
of a nonlinear generalization of Biot’s half-space problem.
All our simulations show that when a half-space of incom-
pressible elastomer is compressed by 34.5% it has an
infinite degeneracy of energy minimizers: the trivial flat
configuration, and a continuous family of isolated sulci
which are stable up to translation and rescaling (i.e.,
vðXÞ ! lvðX=lÞ for any number l > 0), i.e., these symme-
tries are spontaneously broken. Sulcification exchanges
compressive strain for rotation and shear which are ulti-
mately limited by self-contact. Beyond the lower-critical
strain, forming a sulcus of size OðlÞ � 1 releases energy
over a region of size Oðl2Þ, equivalent to the failure of
quasiconvexity at the boundary. The spatial variations of
rx near the compressive strain maximum at X ¼ 0 act as
symmetry-breaking perturbations and determine the ulti-
mate scale l of the surface fold. When the compressive
strain is not localized to a point, the size of the sulcus is not
set by the local geometry of rx and the domain, and the T
bifurcation is sensitive to details and potential interactions
between multiple sulci resulting in reticulation [1,3],
or in a combination of buckling and sulcification [16,17]
(see SI, sec. E).

More generally, T bifurcations might arise in elastic
systems with internal interfaces and nucleationlike pro-
cesses in elliptic systems where nonlinearities enter in a
scale-free way, e.g., the formation of cavities, bubbles and
cracks [18,19]. These processes are notoriously difficult to
control, displaying extreme sensitivity to imperfections,
and are associated with a discontinuous transition in the
microscopic state characterized by a critical size nucleus;
e.g, a bubble or crack will grow only once it has reached a
threshold size. T points should exist in these systems in the
limit when the surface energy vanishes and the size of the
‘‘defect’’ also vanishes, but the ratio of the two which
corresponds to a critical pressure or stress remains finite.
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FIG. 3 (color online). A comparison of experimental (left) and
computed (right) light intensity patterns cast by the central section
of a laser sheet illuminating the slab’s bending axis; the horizontal
axis is transverse to the sheet and the vertical axis is the step
number in a loading-unloading cycle, and corresponds to changes
in � as shown in Fig. 2(a); 4 ¼ sudden appearance of sulcus,
when a caustic suddenly forms, 7 ¼ smooth vanishing of sulcus.
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