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We report on the destabilization of the film edge during the dewetting of ultrathin solid films. An

unusual coarsening behavior is found within the linear instability regime. In addition, we find that the

instability is suppressed along faceted orientations. Our results are obtained via kinetic Monte Carlo

simulations. An analytical model based on diffusion-limited mass transport on the rim and nucleation-

limited increase of the rim height provides a good description of kinetic Monte Carlo simulations. Our

results are consistent with recent experimental observations.
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Dewetting, the process by which a continuous film
breaks up into droplets or islands, has been studied in
many systems, including liquids, polymers, and solids.
Dewetting is known to produce a complex dynamical
behavior, with a wide variety of regimes and instabilities
[1,2]. Since thin solid films play a major role in nano-
technologies, much effort has been devoted to the under-
standing of their stability. Solid films with various
materials exhibit specific dewetting dynamics, where
mass transport is limited by surface diffusion [3–7]. In
recent experiments with nanometrically thin SOI films
(Si=SiO2), large scale ordered arrays of islands emerging
from the dewetting process were observed [4,8–10]. In
these experimental studies, dewetting is usually initiated
at the film edge, or at point defects. A rim forms in the
initial stages [11]. Then, the rim destabilizes, leading to
an array of fingers which finally breakup into islands.
Anisotropy plays a crucial role in this scenario, since it
controls the birth [4,12] and the final orientation [4,10] of
the fingers.

In this Letter, we discuss the early stages of the dewet-
ting process and analyze the stability of the rim. Our study
is based on a kinetic Monte Carlo (KMC) model which has
been recently shown to be in good agreement with experi-
ments in SOI systems [10]. We also present an analytical
model which accounts for the main features of KMC
simulations. We show that an instability emerges for rough
front orientations, while fronts along faceted orientations
remain stable. In addition, unstable fronts exhibit an un-
usual coarsening behavior within the linear regime. This
instability ultimately leads to the breakup of the rim, and
suggests a size selection mechanism for fingers and
islands.

We first present the solid-on-solid KMC model [13,14].
Adsorbate atoms are placed on a square lattice, with lattice
parameter a, and periodic boundary conditions. The local
height is z ¼ 0; 1; 2; . . . (z ¼ 0 for the bare substrate, which
is perfectly flat and frozen). Atoms hop to nearest neigh-

bors, with the frequency � ¼ �0e
�ðnJ��zESÞ=T , where �0 is

an attempt frequency, n is the number of in-plane nearest

neighbors, J is the bond energy, T is the temperature
normalized with the Boltzmann constant, and �z ¼ 1 for
atoms in contact with the substrate, �z ¼ 0 otherwise. The
dimensionless parameter ES=J is related to the energy cost
for covering the substrate with the adsorbate [15]: ES=J ¼
ðEAV þ EAS � ESVÞ=ð2EAVÞ, where EAV, EAS, andESV are
the adsorbate-vacuum, adsorbate-substrate, and substrate-
vacuum energies, respectively. Assuming that energies are
not very different from free energies, we find ES=J � 0:35
for SOI systems using experimental [12] and tight-binding
model results [16]. In addition, for an accurate description
of the step stiffness, J can be related to the kink energy �
via the relation J ¼ 2�. Averaging over A and B step
orientations on Si(100) [17], we find T=J � 0:33 for SOI
systems. Recently, dewetting experiments have also been
performed for Pt(111) films on Yttria-stabilized ZrO2, and
on Si3N4 [18]. Combining experimental measurements
[18] and ab initio calculations [19], one finds ES=J � 0:7
for both substrates, and T=J � 0:2.
In the following, we rescale energies with J, time with

��1
0 , and space with a. Our KMC simulations are per-

formed at T ¼ 0:4 [20], and start with a straight trench in
a continuous film of thickness h ¼ 3. The trench widens,
giving rise to two dewetting fronts moving in opposite
directions. Snapshots of the simulations are shown on
Fig. 1. A rim with a faceted top always forms in the early
stages of the dynamics. The sides of the rim top facet
define two lines, which will be denoted as x1ðy; tÞ on the
substrate side, and x2ðy; tÞ on the film side, as shown on
Fig. 2(a). When the initial trench is in the (100) direction,
as in Fig. 1(a), we observe no instability, even at very long
times t > 109 in large systems (with lateral size L ¼
1200). However, fronts along the (110) direction exhibit
an instability of x1, while x2 remains straight, as shown in
Fig. 1(b). The wavelength of the instability—measured
with the number of extrema of the front, is reported on
Fig. 2(c), and increases with time. The amplitude of the
instability also grows, ultimately leading to the breakup of
the rim. Finally, fingers emerge and invade the film, as
shown in Fig. 1(c).
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Two remarks are in order. First, we found no qualitative
change in the parameter range 0:5<ES < 2 and 0:3<
T < 0:6 (simulations with ES < 0:5, or T < 0:3 were too
slow to be performed systematically). Second, experiments
in SOI systems [12] exhibit an anisotropy similar to that
observed in KMC simulations, where the instability is
suppressed when the front is rotated by 45�. In the follow-
ing, we analyze the stability in the two directions, and
show that the stability of the (100) front results from the
presence of a (100) vertical facet at the rim edge on the
substrate side (x1).

So far, most theoretical investigations of the dewetting
process in the literature have been based on the isotropic
continuum surface-diffusion model of Mullins [21]. Such
an approach has allowed one to study the opening of holes
in the film [22], and the motion and stability of films and
straight dewetting fronts [23,24]. However, there is not

only experimental evidence of strongly anisotropic behav-
iors [4,12], but also evidence of the presence of facets on
the dewetting rim [10,25]. The dynamics on these facets,
which is related to 2D nucleation, cannot be described
within the Mullins model. Thus, another model [14], in-
cluding diffusion-limited mass transport on the rim facet
and nucleation-limited increase of the rim facet height,
was proposed recently. In Ref. [14], the global motion of
the straight faceted (100) front in KMC simulations was
shown to be well described by this model. We here extend
this model to describe the full 2D dynamics of the dewet-
ting rim, including the possible instabilities. Mass conser-
vation on the rim facet now reads

h1vn1 ¼ �n1 �Drc1 þ ‘@th1; (1)

h2vn2 ¼ �n2 �Drc2; (2)

where h1 is the rim facet height, h2 ¼ h� h1, the indices
i ¼ 1, 2 refers to the fronts x1, x2, and ‘ ¼ x2 � x1. In
addition, vni are normal velocities along the normal vector
ni (towards the film). The adatom concentration c of the
top facet obeys a quasistatic diffusion equation D�c ¼ 0.
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FIG. 2 (color online). Model results (except for ES, the pa-
rameters are the same as in Fig. 1). (a) Mechanism of the
instability. Dashed lines are isoconcentration lines, and arrows
indicate diffusion mass fluxes. (b) Straight front solution (solid
blue line) compared to the average motion of (100) and (110)
fronts from KMC simulations (symbols) for ES ¼ 1. (c) Typical
wavelength of the instability for ES ¼ 1 (gray or blue online)
and ES ¼ 2 (black). The symbols are the instability wavelength
from KMC simulations calculated from the number of maxima
of the front. The solid line corresponds to Eq. (11), the dashed
line and the dash-dotted lines account for the wavelength of
the instability calculated from the solution of Eq. (9), with the
number of maxima or the wavelength of maximum amplitude,
respectively. (d) Evolution of the amplitude of different modes.
One observes instability for (110) fronts (gray or blue online,
q ¼ 0:25, 0.16, 0.1, 0.06). Modes with smaller qs exhibit a larger
peak at later times, leading to coarsening. In contrast, (100)
fronts (black q ¼ 0:05, 6� 10�4, 8� 10�6, 10�7) are stable:
the amplitude saturates for some time, and then decreases.
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FIG. 1 (color online). KMC simulations. Snapshots are pre-
sented in the left panels, here the Gray-scale (blue-yellow-red
color scale online) indicates the local height z. Right panels
show the evolution of the film edge position x1 as a function of
time. Dewetting fronts are initiated by trenches along (100) in
(a), along (110) in (b),(c). In all cases T ¼ 0:4, and the initial
height is h ¼ 3. (a) A straight faceted rim forms, and no
instability is observed for the (100) front, in a 1000� 1000
system, with ES ¼ 0:5. (b) Zoom (200� 200) at the early stages
along (110). The typical wavelength of the instability increases
with time: one observes coarsening. (c) Late time dynamics of
(110) fronts. Fingers emerge from the rim instability. Parameters
for (b),(c) 1200� 1200 system, with ES ¼ 1:5.
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At the fronts i ¼ 1, 2, the concentration c is fixed to its

equilibrium value ci ¼ ceqe
�i=T , where �i are the local

chemical potentials [15]:

�1 ¼ �~�1�1 þ ES=h1; (3)

�2 ¼ ~�2�2: (4)

Here �i is the front curvature, and ~�i ¼ ~�fi=hi, where ~�fi

is the total stiffness of the front i.
In addition, the rim height increases via 2D nucleation

on the rim facet. Using nucleation theory, and diffusion-
limited step dynamics, one finds [14]:

@th1 ¼ ‘1=2

h7=41

DceqC
1=2
zip E

7=4
S

�1=2�3=2T1=4
e���2h1=ð2TESÞ; (5)

where Czip � 0:25, and � is the step free energy on the rim

facet.

Solving this model for a straight rim, one finds x1, x2 �
t1=2, with small corrections related to the slow dynamics of
h1 [14]. The solution is in good agreement with the global
motion of the stable (100) front, but also with that of the
(110) front (before the rim breakup) in KMC simulations
with no fitting parameter, as shown on Fig. 2(a).

In order to discuss the morphological stability of the
dewetting front, the model equations are linearized as

cðx; y; tÞ ¼ cð0Þðx; tÞ þ cð1Þðx; y; tÞ; (6)

xiðy; tÞ ¼ xið0ÞðtÞ þ xið1Þðy; tÞ; (7)

h1ðy; tÞ ¼ h1ð0ÞðtÞ þ h1ð1Þðy; tÞ; (8)

where i ¼ 1, 2. The quantities with the index (0) are the
straight front solution, and (1) indicates a small perturba-
tion. Upon the substitution of Eqs. (6)–(8) into the model
Eqs. (1)–(5), we obtain a linear system of equations to
leading order in the perturbation. We define q as the
Fourier wave vector along y. The Fourier components
obey the following dynamical equation

@t�qðtÞ ¼ MqðtÞ�qðtÞ; (9)

where �qðtÞ ¼ ðx1ð1ÞqðtÞ; x2ð1ÞqðtÞ; h1ð1ÞqðtÞÞ, and MqðtÞ is a
time-dependent 3� 3 matrix which depends on the 0th
order straight front solution. The lengthy expression of the
coefficients of MqðtÞ will be reported in a forthcoming

publication.
We choose the initial rim width ‘2� to be the width at the

time t2� of completion of the second rim layer, assuming
that the first rim layer was formed with a width � ‘2�,
where t2� and ‘2� are calculated from the model of
Ref. [14]. We also assume that the fronts 1 and 2 roughen
as if they were in equilibrium during t2�. Assuming
diffusion-limited dynamics, the initial Fourier amplitudes

then obey [26]: jxið1Þqð0Þj2 ¼ ð1� e�t2�=	iÞðT=�q2Lhi�Þ,
with 	i ¼ Thi�=ð4Dceq ~�iq

3Þ, where h1� ¼ hþ 2, and

h2� ¼ 2, while the phases are randomly chosen. In addi-
tion, since the rim facet is atomically flat in the straight
unperturbed front [14], we choose h1ð1Þðx; 0Þ ¼ 0.
Let us first focus on the case of the unstable (110)

orientation. Since the (110) orientation is rough, we as-
sume that ~�1 ¼ ~�2 ¼ �. This assumption amounts to
considering (110) fronts as bunches of isotropic steps,
neglecting entropic interactions. The full numerical solu-
tion of the linearized model (9) is performed using 5000
Fourier modes. An instability of x1ð1Þ appears, while the

amplitude of x2ð1Þ remains small, in agreement with KMC

simulations. The mechanism of the instability is depicted
in Fig. 2(a), and can be interpreted as a diffusion-limited
destabilization similar to the Bales and Zangwill [26], or
Mullins and Sekerka [26] instabilities. In order to compare
the full numerical solution of Eq. (9) with KMC simula-

tions, we use [13,14]: � ¼ 0:42 J, and Dceq ¼ e�2J=T=4.

The typical wavelength of the instability in the full nu-
merical solution, shown in Fig. 2(c), is in agreement with
KMC simulations. Changing the details of the initial con-
ditions only have small consequences on the result.
We now proceed with a more detailed analysis of

Eq. (9). From the mechanism depicted in Fig. 1, the
instability is expected to occur at q‘ 	 1, and the term
@th1ð1Þ in Eq. (1) is expected to be irrelevant. Within this

limit h1ð1ÞqðtÞ ¼ 0, and M is diagonal. The resulting dy-

namics can be solved as

xið1ÞqðtÞ ¼ xið1Þqð0Þeqð
iaiðtÞ�biðtÞq2Þ; (10)

where aiðtÞ ¼
R
t
0 dt

0ðDceqES=TÞh�1
1ð0Þðt0Þh�1

ið0Þðt0Þ‘�1
ð0Þ ðt0Þ,

biðtÞ¼
R
t
0dt

0ðDceq ~�i=TÞh�1
ið0Þðt0Þ, 
1 ¼ þ1, and 
2 ¼ �1.

The contribution proportional to biðtÞ related to the front
stiffness is always stabilizing, while the contribution pro-
portional to 
iaiðtÞ is destabilizing for x1 and stabilizing
x2, as expected from Figs. 1(a) and 2(b). Since the increase
of h1 is exponentially attenuated from Eq. (5), we may
obtain a simple qualitative picture by assuming that h1ð0ÞðtÞ
is constant. Such an assumption leads to biðtÞ � t, and

aiðtÞ �
R
dt‘�1 � t1=2. As a consequence, the destabiliz-

ing term is always dominant at short times, and the stabi-
lizing term is always dominant at large times. Hence, x1ð1Þq
exhibits a maximum in time, shown in Fig. 2(d). This
maximum depends on q. As a consequence, the wave-
length of the mode of largest amplitude �max increases
with time, leading to coarsening. At long times, the con-
sequences of initial conditions are negligible and

�max � 2�

� 3
R
t
0 dt

0 ~�1h
�1
1ð0Þðt0ÞR

t
0 dt

0ESh
�2
1ð0Þðt0Þ‘�1

ð0Þ ðt0Þ
�
1=2

: (11)

If h1ð0ÞðtÞ were constant, one would have ‘� t1=2, and

�max � t1=4. However, due to the slow increase of h1, one
obtains an effective power law �� t0:2 from Eq. (11), in
agreement with the full numerical solution of the model,
and with KMC simulations, as shown in Fig. 2(c).
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We now introduce the consequences of the term @th1ð1Þ
of Eq. (1) in perturbation. The resulting expressions are
lengthy, and will be reported elsewhere. They indicate that
x2ð1Þ is in phase with x1ð1Þ, while h1ð1Þ is out of phase with it,
in qualitative agreement with KMC simulations. Indeed,
the wider parts of the rim are higher than the pinched
parts, and x2 exhibits a small waviness in phase with x1
in Fig. 1(b).

From the full numerical solution of Eq. (9), we have
observed the breakup of the rim when the typical pertur-
bation amplitude becomes equal to ‘. Breakup occurs with
a typical wavelength �B, after a time tB, with

tB � E�2:8
S h4:2; �B � E�1:0

S h1:2: (12)

However, we could not confirm these scalings with KMC
simulations due to the high computational cost of the
simulations. Once again these results can be understood
if we assume that q‘ 	 1, and h1 is constant, leading to

tB � 36T ~�2
1h

4
1h

3

27DceqE
3
Sðh1 � hÞ3 ; �B � 32��h1h

2ESðh1 � hÞ : (13)

Using the additional assumption that h1 � h, we obtain
tB � E�3

S h4 and �B � E�1
S h. These results are in reason-

able agreement with the full numerical solution Eqs. (12).
At this point, it is tempting to speculate that the rim
breakup at the wavelength �B selects the width of the
fingers which evolve in the fully nonlinear regime.

We now turn to the case of (100) fronts. Here, we do not
claim quantitative accuracy, and we rather focus on a
qualitative discussion of the stability. Our starting point
is the observation of the presence of a vertical (100) facet
at x1 in (100) fronts. As an approximation, vertical steps
running on the vertical (100) facet may then play the same
role as kinks in atomic steps. The energy of such steps
is of the order of �h1, where � is the step free energy,
so that the step density per unit (100) front length reads

ns � 2e��h1=T . Since ns is low, the front diffusivity can be
calculated as �2 � ns [27]. The diffusivity can in turn

be related to an effective stiffness [27] ~�100 ¼ T=�2 �
ðT=2Þe�h1=T . The exponential increase of ~�100 with h1 is
expected, because a true facet without steps running on
it should emerge when h1 becomes large. Hence, ~�1 ¼
~�100=h1 increases drastically during the dewetting process
where h1 increases. The full solution of Eq. (9) then
indicates that the front should be stable, as shown in
Fig. 2(d), and in agreement with KMC simulations of
Fig. 1(c). This can be understood from the simplified
expression of Eq. (10), where the stabilizing term biðtÞ
increases exponentially with h1.

Finally, we would like to make some link with previous
work on rim stability, discussed within the frame of the
isotropic continuum surface-diffusion model of Mullins.
In Ref. [24], the instability was considered as emerging
from a frozen rim, and this strong assumption forbade

the appearance of coarsening. It is therefore tempting to
speculate that a full stability analysis of the dewetting rim
within the Mullins model should also lead to coarsening,
although the coarsening exponent could be different. In
addition, the instability was interpreted as the consequence
of the energy-minimizing Rayleigh-Plateau instability of
the rim in Ref. [24]. In contrast, our interpretation summa-
rized on Fig. 2(a) classifies the rim instability as a diffusive
kinetic instability similar to the Mullins and Sekerka, or
Bales and Zangwill instabilities [26].
In conclusion, dewetting fronts exhibit an instability

where coarsening can be observed within the linear regime.
We also find a strong anisotropy of the instability, which is
consistent with experiments in SOI systems [12].
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