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We have studied the transition from two to three dimensions in a low temperature weakly interacting
6Li Fermi gas. Below a critical atom number N2D only the lowest transverse vibrational state of a highly

anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N2D the Fermi gas

enters the quasi-2D regime where shell structure associated with the filling of individual transverse

oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the

cloud size and aspect ratio versus atom number.
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Dimensional crossovers provide a bridge between seem-
ingly disparate behaviors in physical systems. For example,
Bose-Einstein condensation (BEC) and superfluidity gener-
ally coexist in three dimensions (3D) but, in 2D,Berezinskii-
Kosterlitz-Thouless (BKT) superfluidity can occur without
BEC [1,2]. Ultracold atomic gases offer unprecedented
opportunities to explore such crossovers where the dimen-
sionality and interactions can be precisely controlled [3].
The evolution from a BEC to a BCS (Bardeen-Cooper-
Schrieffer) superfluid at a Feshbach resonance is now a
central topic in 3D Fermi gas research [4–10]. Restricting
these gases to 2D dramatically alters pairing and superflu-
idity [11–19] and may offer insight into itinerant ferro-
magnetism [20,21] and Fulde-Ferrell-Larkin-Ovchinikov
superfluidity [22–24], also seen in quasi-2D heavy fermion
superconductors [25]. In the crossover region, the evolution
from a BCS to BKT superfluid can also be investigated.

Dimensional crossovers are characterized by access to
new degrees of freedom. As new quantum states become
accessible, their discrete energies can be immediately ap-
parent. In quasi-2D Fermi gases, where the transverse
confinement energy is on the scale of the Fermi energy,
occupation of new transverse states gives rise to shell
structure, leading to steps in the density profile, chemical
potential, and specific heat with increasing system size as a
consequence of Pauli exclusion [26–28].

In this Letter we study the crossover from 2D to 3D in a
two-component optically trapped 6Li Fermi gas. The scal-
ing of the cloud width with atom number in both the tight
and weakly confined directions changes dramatically
through the crossover. We also see clear indications of
shell structure associated with the filling of discrete energy
levels, a feature which is most pronounced in the aspect
ratio of the cloud. The experimentally observed structure
agrees well with theoretical predictions for a weakly inter-
acting Fermi gas.

Recent experiments have investigated 2D phenomena in
Fermi gases prepared in one-dimensional optical lattices

[29–33]. Lattice-based experiments produce multiple 2D
clouds that can be imaged simultaneously offering good
measurement signal to noise. However, the cloud size in
the tightly confined direction is typically submicron, well
below the resolution of nearly all imaging systems, so the
properties of individual clouds cannot be easily measured.
We overcome this limitation by creating single 2D clouds
that can be expanded for imaging.
Achieving the 2D regime in a Fermi gas requires that the

Fermi energy EF and temperature T are sufficiently low
that excitations in one dimension (z) are forbidden. This
can be understood by considering an ideal Fermi gas con-
fined in an harmonic trapping potential

Vðx; y; zÞ ¼ 1
2mð!2

rx
2 þ!2

ry
2 þ!2

zz
2Þ; (1)

where m is the mass of the atoms and !r;z are the trapping

frequencies in the radial (r) and transverse (z) directions,
respectively. For simplicity, we consider the radially
symmetric case (!x ¼ !y ¼ !r) and an oblate geo-

metry where !z � !r. In 2D the Fermi energy is given

by EF;2D ¼ ffiffiffiffiffiffiffi
2N

p
@!r where N is the number of atoms in

each spin state. In 3D the Fermi energy is EF;3D ¼
ð6NÞ1=3@ �! where �! ¼ ð!x!y!zÞ1=3.
At zero temperature, the Fermi radii are set by the Fermi

energy. In 3D this gives RF;ri ¼ ð48NÞ1=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where ri ¼ x, y, z. In contrast, when the gas is two dimen-
sional (EF � @!z), the width in the tightly confined di-
rection is set by the size of the harmonic oscillator ground

state az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!zÞ

p
. In the radial directions, however, the

Fermi radius is

RF;r ¼ ð8NÞ1=4
ffiffiffiffiffiffiffiffiffiffi
@

m!r

s
: (2)

This N1=4 growth is more rapid than in 3D as two phase-
space degrees of freedom (z, pz) are no longer accessible.
As EF depends on the atom number we define a critical
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number N2D below which atoms populate only the lowest
transverse vibrational state at T ¼ 0 and the gas is 2D. This
is equal to the number of single particle states with energy
less than the lowest state with one transverse excitation.
Labeling harmonic oscillator states by the vibrational
quantum numbers nr and nz and defining the trap aspect
ratio as � ¼ !z=!r we can count the number of (nz ¼ 0)
states with energy less than the (nr ¼ 0, nz ¼ 1) state.
These states satisfy nr < � so, including degeneracies,
N2D is given by

N2D ¼ X��1

nr¼0

ðnr þ 1Þ ¼ �

2
ð�þ 1Þ: (3)

In the experiments that follow, we work in a trap with
� � 60 corresponding to N2D � 1800.

When only a few transverse states are occupied the gas is
quasi-2D and the number Nn at which the nth transverse
state begins to fill is given by

Nn ¼ �

4
nðnþ 1Þ

�
�

3
ð2nþ 1Þ þ 1

�
: (4)

At these points we expect steps in the scaling of the cloud
size with N, giving rise to shell structure.

We quantify the cloud size using root mean square (rms)

radii �ri ¼
ffiffiffiffiffiffiffiffi
hr2i i

q
which provide a model independent

width measure applicable at both zero and finite tempera-
tures. To calculate �ri theoretically, we first find the 3D

density profile nðx; y; zÞ, integrate this over two dimensions
to obtain a line profile nðriÞ and then evaluate the second
moment hr2i i ¼

R
nðriÞr2i dri=

R
nðriÞdri � �2

ri . For an

ideal Fermi gas, nðx; y; zÞ is found by summing the
squared wave functions of the individual oscillator states.
However, as our experiments are performed at a magnetic
field of 992 G where the s-wave scattering length is
as ¼ �4300a0 (a0 is the Bohr radius), we have also calcu-
lated nðx; y; zÞ by numerically solving the 3D Hartree-Fock
mean-field equations for our oblate trapping potential. In
the weakly confined radial directions, we use a local den-
sity approximation assuming a slowly varying density
profile as a function of r. At each r, we then solve the
Schrödinger equation for the transverse direction to obtain
the full density profile nðx; y; zÞ.

To create a 2D Fermi gas, we begin with a cloud of
approximately N ¼ 105 6Li atoms in each of the lowest
two spin states jF ¼ 1=2; mF ¼ �1=2i in a far detuned
optical dipole trap. The cloud is evaporatively cooled to a
temperature T � 0:1TF at a magnetic field 834 G [34], at
the center of the Feshbach resonance, where elastic colli-
sions are unitarity limited. To vary the final atom number
we continue the evaporation by further lowering the dipole
trap power so that atoms are spilled while maintaining the
cloud at the lowest possible temperature.

Next we adiabatically ramp on the 2D optical trap,
formed by a cylindrically focused Gaussian beam
propagating along the y direction with 1=e2 waists of
wz ¼ 8 �m and wx ¼ 400 �m in 200 ms. Similar
configurations have been used to study 2D Bose gases
[35,36]. Once this trap is fully on, the first beam used for
evaporation is ramped down in 200 ms leaving the atoms in
the 2D trap. Confinement in the y direction is achieved by
the short Rayleigh length associated with the 8 �m waist.
Additional confinement in the x and y directions is pro-
vided by the curvature of the magnetic field. The 2D
trapping frequencies are!z=2� ¼ 2800 Hz and!r=2� ¼
47 Hz (!x �!y � !r) giving an aspect ratio of approxi-

mately 60. Finally we adiabatically ramp the magnetic field
to 992 G where the cloud is imaged. Precise temperatures
in the 2D trap are difficult to ascertain due to the lack of an
analytic model for interacting quasi-2D gases. However,
we expect the temperature to be below 0:1TF due to the
adiabatic field sweep and deep evaporation used to prepare
the low atom number clouds.
To demonstrate the crossover from 2D to 3D wemeasure

the cloud radii in the tight and weakly confined directions
as a function of N. In the z direction the cloud width in trap
(az � 770 nm) is much smaller than the resolution of our
imaging system, so a short time of flight (500 �s) is used
before imaging. This time is long compared to the inverse
trapping frequency in the z direction (1=!z ¼ 57 �s) but
short compared to 1=!y (3.4 ms). The cloud distribution in

the radial direction will therefore be equivalent to the in-
trap distribution.
The imaging beam propagates roughly along the (radial)

x direction, so we obtain two-dimensional density profiles
nðz; yÞ. Absorption images are processed using a fringe
removal algorithm [37] to optimize image quality. From
these images we generate line profiles nðzÞ and nðyÞ by
integrating over the other dimension. Figure 1 shows the
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FIG. 1 (color online). One-dimensional density profiles for
clouds at 992 G as a function of atom number in the tight (a)
and weakly confined (b) directions after 500 �s expansion. Solid
black lines are contours of equal density and the dashed red lines
show the predicted rms cloud width for an ideal Fermi gas.
The color bar indicates line density in units of atoms=�m.
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measured line densities as a function of atom number
for gases at 992 G (as ¼ �4300a0) in both the tight
and weakly confined directions. The plots consist of
approximately 50 profiles; each profile is the average of
several images binned according toN. The dashed red lines
show scaled predictions for the zero temperature rms ra-
dius for an ideal Fermi gas and the solid lines are contours
of equal density.

In order to compare these data with theory, we evaluate
the rms widths from the profiles in Fig. 1. Figure 2 (main
panel) shows the rms cloud width in the y direction (�y)

versus atom number. Data points are the experimental
measurements and the solid and dashed lines are the
predictions for a weakly interacting and ideal Fermi
gas, respectively. Each theory curve has been scaled by
1.19 (1.11) for the weakly interacting (ideal) gas to lie on
top of the experimental data at low N, where interactions
are least significant the models are most accurate. These
scalings account for factors such as finite imaging resolu-
tion, nonzero cloud temperature, and a slight ellipticity in
the radial confinement (!x=!y � 1:1), but do not affect

the power-law dependence of the width. The data closely
follow the predicted growth rate for a weakly interacting
gas over the full range of atom numbers with an elbow
around N ¼ 2000 ð� N2DÞ corresponding to the transition
between 2D and quasi-2D regimes. The data deviate
below the ideal gas prediction at high N where inter-
actions become more important. As the atom number and
density increases, the attractive interactions become
more significant and slow the growth rate of the cloud.
For the lowest numbers (N � 800) the interaction parame-
ter 1=ðkFasÞ ¼ �2:3, where kF is the Fermi wave
vector. For N � 105 the gas is approaching the strongly

interacting regime, 1=ðkFasÞ ¼ �1:0, and our weakly
interacting theory will begin to break down. Below
N2D ¼ 1800, a least squares fit to the experimental data
shows that the width grows asN0:28�0:05, in agreement with
theN0:25 scaling predicted by Eq. (2). AboveN2D, the fitted
dependence is N0:151�0:004, in reasonable agreement with
the interacting gas prediction of N0:146 but well below the
ideal gas prediction of N0:174.
The inset of Fig. 2 shows the cloud width in the

z direction. The theoretical widths here have been scaled

by b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!2

z t
2

q
to account for the t ¼ 500 �s expansion.

The value of b which provides the best agreement with the
low N data is 1.24 (1.20) for the weakly interacting
(ideal gas) theory. These values are slightly larger than
those used in the radial direction suggesting the expansion
may not be simply ballistic. Below N2D the transverse
width is roughly constant scaling as N0:07�0:04 in reason-
able agreement with the predictions of N�0:01 for an inter-
acting gas and N0 for an ideal gas. Finite temperature may
lead to occupation of the (nz ¼ 1) state for N <N2D which
would increase the measured exponent. For N >N2D the
width scales as N0:124�0:004, compared to N0:100 and N0:133

for the interacting and ideal gases, respectively. These
exponents measured in the z direction may be influenced
by the cloud expansion which could have a nontrivial
dependence on N [38,39] as 1=ðkFasÞ varies by more
than a factor of 2 for the range of atom numbers considered
here. We note that the calculated exponent for the non-
interacting gas is below the true 3D value of 1=6 as the data
lie in the quasi-2D regime where shell structure influences
the widths.
To further investigate the shell structure we now focus

on the cloud aspect ratio, � ¼ �z=�y. Shell structure will

be more prominent in measurements of � than in the
individual widths as the filling of new transverse shells
begins in states with low radial quantum numbers; hence
an increase in the transverse cloud size will correlate with a
decrease in the growth rate of the radial size. In the 3D
limit, the cloud aspect ratio would be constant but in 2D
and quasi-2D �will show a strong dependence on the atom
number. Additionally, as � is given by the ratio of two
measured quantities, certain experimental systematics
(e.g., finite imaging resolution and shot-to-shot tempera-
ture variations) will be reduced.
In Fig. 3 (main panel) we plot the aspect ratio of the

cloud along with theoretical predictions for the weakly
interacting (solid line) and ideal (dashed line) Fermi gases.
The agreement between theory and experiment is very
good and the large change in aspect ratio with N clearly
demonstrates departure from 3D behavior. Only at high
atom numbers does the aspect ratio level off indicating
broad coverage of the 2D and quasi-2D regimes. The
arrows indicate the calculated atom numbers at which
new transverse states become accessible, Eq. (4). The
interacting and ideal gas predictions are very similar,
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FIG. 2 (color online). Measured rms cloud widths (data points)
and theoretical predictions for a weakly interacting (solid lines)
and ideal (dashed lines) Fermi gas. Radial cloud width is plotted
in the main panel and the inset shows the transverse cloud width
after 500 �s expansion. Theoretical curves are scaled as de-
scribed in the text.
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emphasizing the robustness of aspect ratio measurements
for identifying the dimensional crossover.

At low N, the aspect ratio decays steadily with increas-
ing atom number, before a step occurs at N2D correspond-
ing to occupation of the first transverse excited state.
The inset of Fig. 3 shows the gradient d�=dN of the
theoretical and experimental aspect ratios which show
the signatures of shell structure more clearly. The experi-
mental gradients were evaluated numerically and
smoothed with a five-point moving average. Both the
measured aspect ratio and gradient closely follow the
theoretical predictions, with indications of shell structure
present in the experimental data for N & 10 000 corre-
sponding to occupation of the ground and first transverse
excited states. The location of the first two arrows in the
plots agrees well with the position of the steps. For largerN
the data lie close to the theoretical line but the shell
structure is unresolved.

This work provides the first quantitative study of the
transition from 2D to quasi-2D and 3D in a weakly inter-
acting Fermi gas. At low atom numbers, shell structure,
associated with the filling of individual transverse oscilla-
tor states, becomes apparent. Our data were obtained
away from any confinement induced scattering resonances
(as < az); however, these could easily be accessed closer
to the Feshbach resonance [12,31,40]. This work opens the
way to investigations of the phase diagram of 2D and
quasi-2D Fermi gases as a function of the scattering length
and temperature and could help elucidate the evolution
from BKT to BCS superfluidity through the 2D-3D
crossover.
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[31] B. Fröhlich et al., Phys. Rev. Lett. 106, 105301 (2011).
[32] X. Du, Y. Zhang, and J. E. Thomas, Phys. Rev. Lett. 102,

250402 (2009).
[33] K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev.

Lett. 105, 030404 (2010).
[34] J. Fuchs et al., J. Phys. B 40, 4109 (2007).
[35] A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).
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FIG. 3 (color online). Cloud aspect ratio in the 2D-3D cross-
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(solid line) and ideal (dashed line) Fermi gas. Arrows indicate
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